学校食堂厨师帽厨师服佩戴识别系统对学校食堂餐厅监控画面开展实时检测,学校食堂厨师帽厨师服佩戴识别系统对厨师没有戴厨师帽厨师服口罩或者在厨房抽烟玩手机等行为,学校食堂厨师帽厨师服佩戴识别系统马上警报,并把警报截屏和视频保存下来发送给监控后台,并同步到相关人员的手机上。
YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:
- 输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;
- 基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;
- Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN+PAN结构;
- Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。
为应对经常出现的食品安全事件,管理单位逐渐对学校食堂餐厅进行严格监督,这个过程花费了大量人力和物力资源。除此之外,在现阶段,绝大部分餐饮业仍选用传统安防监控系统,并没有积极主动识别问题行为,未起到主动识别异常行为、违规操作提前预警作用。
YOLOv5中在训练模型阶段仍然使用了Mosaic数据增强方法,该算法是在CutMix数据增强方法的基础上改进而来的。CutMix仅仅利用了两张图片进行拼接,而Mosaic数据增强方法则采用了4张图片,并且按照随机缩放、随机裁剪和随机排布的方式进行拼接而成。这种增强方法可以将几张图片组合成一张,这样不仅可以丰富数据集的同时极大的提升网络的训练速度,而且可以降低模型的内存需求。
没戴厨师帽厨师服口罩识别报警是通过食堂已经有的摄像头进行实时分析监测,这样就可以起到利旧不增加其他硬件设备成本的情形下,依靠机器视觉和视频监控ai分析技术,为顾客提供良好的服务。学校食堂厨师帽厨师服佩戴识别系统可广泛用于工地厨房餐厅、连锁餐饮企业、中央厨房、食品厂生产流水线、高校食堂等监控区域。