前言
洛伦兹变换有一个洛伦兹因子
γ
\gamma
γ,通过推导得到相对论条件下,有这样一个压缩因子,之后推导一是可以从头推,二是可以在伽利略变换的方程基础上加上这个因子 。
洛伦兹速度变换
之前进行洛伦兹变换的时候,是原点处为起始,光线一是沿着K轴到人眼,二是沿着K’轴到同一距离下的K‘轴上的的另一个人的眼,得到的洛伦兹变换公式。但是如果不是光,而是人呢?原点起始时,人站在K‘轴原点,开始后以速度 v ′ v' v′移动,两坐标轴相对速度 u u u,则从K轴上看,人的移动速度是多少?
根据洛伦兹变换,有
v = x t = x ′ t ′ + u 1 + u c 2 x ′ t ′ = v ′ + u 1 + v ′ u c 2 v=\frac{x}{t}=\frac{\frac{x'}{t'} + u }{ 1 + \frac{u}{c^2} \frac{x'}{t'} }=\frac{v'+u}{1+\frac{v' u}{c^2}} v=tx=1+c2ut′x′t′x′+u=1+c2v′uv′+u
反变换
v ′ = x ′ t ′ = x t − u 1 − u c 2 x t = v − u 1 − v u c 2 v'=\frac{x'}{t'}=\frac{\frac{x}{t} - u }{ 1 - \frac{u}{c^2} \frac{x}{t} }=\frac{v-u}{1-\frac{v u}{c^2}} v′=t′x′=1−c2utxtx−u=1−c2vuv−u
斐索实验
液体在管子中流动,相对管子速度为 v v v,光在液体中的速度为 w w w, 光相对管子速度为多少?
根据折率定义,光在液体中速度为
w
=
c
n
w=\frac{c}{n}
w=nc
其中n是光在液体中的绝对折射率。
根据洛伦兹速度变换有
W = v + w 1 + v w c 2 = v + c n 1 + v c n = c n ⋅ 1 + v n c 1 + v c n = b 1 1 + x W=\frac{v + w}{ 1 + \frac{vw}{c^2} } = \frac{v + \frac{c}{n}}{1 + \frac{v}{cn} } \\\\ =\frac{c}{n} ·\frac{1 + v\frac{n}{c} }{1+\frac{v}{cn} } = b\frac{1}{1 + x} W=1+c2vwv+w=1+cnvv+nc=nc⋅1+cnv1+vcn=b1+x1
其中W为光相对管子速度。
b = c n ( 1 + v n c ) b=\frac{c}{n}(1 + v \frac{n}{c} ) b=nc(1+vcn)
x = v c n x=\frac{v}{cn} x=cnv
由于x远小于1,根据等价无穷小有
b 1 + x ≈ b − b x \frac{b}{1+x} \approx b - bx 1+xb≈b−bx
W ≈ c n + v ( 1 − 1 n 2 ) W\approx \frac{c}{n} + v(1 - \frac{1}{n^2}) W≈nc+v(1−n21)
当 w = c n w=\frac{c}{n} w=nc趋近光速c时,W趋近光速c。所以,一个坐标系中如果光速为c,那么另一个坐标系中光速也为c,光速不变。