pytorch:mnist+resnet

本文介绍了如何使用PyTorch在MNIST数据集上应用ResNet模型,适合对ResNet不熟悉的读者,提供了一个从CIFAR-10到MNIST的迁移学习案例。
摘要由CSDN通过智能技术生成

对resnet不熟悉的,可以看一下这篇:
cifar-10+resnet

import torch
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torch.utils.data import DataLoader,Dataset
from torch import optim
import os
import csv
from PIL import Image
import warnings
warnings.simplefilter('ignore')
from torchvision import datasets

#载入数据
trans = transforms.Compose((transforms.Resize((32,32)),transforms.ToTensor()))
train_set = datasets.MNIST('./num',train=True,transform=trans)
#mnist中的test_set一共有1万张照片,这里我们把前5000张用作validation_set,后5000张用作test_set
val_set = list(datasets.MNIST('./num',train=False,transform=trans))[:5000]
test_set = list(datasets.MNIST('./num',train=False,transform=trans))[5000:]

train_loader = DataLoader(train_set,batch_size=150,shuffle=True)
val_loader = DataLoader(val_set,batch_size=50,shuffle=True)
test_loader = DataLoader(test_set,batch_size=50,shuffle=True)


#构建resblock
class resblock(nn.Module):
    def __init__(self,ch_in,ch_out,stride=1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值