论文:Multivariate Time Series Anomaly Detection and Interpretation using Hierarchical Inter-Metric and Temporal Embedding 作者:Zhihan Li、Youjian Zhao、Jiaqi Han、Ya Su、Rui Jiao、Xidao Wen、Dan Pei 机构:清华 KDD 2021 代码:https://github.com/zhhlee/InterFusion 引用量:30(截至:2023/06/16)

这篇论文出自清华裴丹老师团队。裴丹老师团队在多维时间序列,根因分析方面做了很多工作,在aiops领域很有影响力,与工业界有很多合作。文章提出一种无监督的方法(interFusion),可同时对多维时间序列的不同指标间的依赖和时间顺序依赖进行建模。核心思想是通过两个随机隐变量,通过变分自编码器(VAE)对多维时间序列数据中的正常模式进行建模,基于重构概率计算异常分数。此外,论文中提出一种基于马尔科夫链蒙特卡罗(MCMC)的方法,对多维时间序列的异常结果进行解释。论文在来自不同工业领域的四个真实数据集上进行了实验,验证算法效果。
1,论文主要贡献
模型结构上:
-
分层结构:先学习时间顺序依赖信息再学习不同指标健的依赖信息,使模型训练过程简洁高效。
-
二视图:是模型同时捕捉到同一个实体不同指标间的依赖信息和时间顺序依赖信息
-
预过滤策略:降低模型过拟合风险
异常解释上:
-
MCMC重构时序正常分布,清楚解释实体内异常最大的指标,以及不同指标偏离正常模式的程度。
-
IPS指标衡量异常检测效果
2,多元时序异常检测的现状
基于时间顺序依赖信息建模:LSTM-NDT、MSCRED
基于不同指标间依赖信息建模:LSTM-VAE、OmniAnomaly、DSANET、USAD
InterFusion则是第一个同时基于时间顺序依赖信息和不同指标间依赖信息进行建模的方法。且在异常可解释性方面,也提供了更加准确和可理解的方法。
3,模型结构

图1:interFusion 网络结构
模型架构:
图1(a)是整体的模型架构,左边是变分网络,主要基于输入的实体样本x,生成Temporal Embedding( ) 和Inner-metrick Embedding( );右边是生成网络,主要是基于z_{2}和z_{1}来得到重构后的样本x,左右两个网络组合起来,是有encoder-decoder的思想在的。
实体样本x可以理解为是一个多元时序的集合。比如一个Web服务器,它包含了很多时序指标,如cpu利用率,内存利用率等,一个指标是一条一维的时序。他的维度是 ,其中M代表该实体包含的指标的个数。W代表每个指标在时间维度上的样本点个数。样本X首先经过conv1D卷积层得到 ,这一步主要是通过卷积神经网络,学习时间上的依赖关系,经过卷积层之后, 的维度为 ,在时间维度上进行了压缩降维。
在应用于图像领域的分层HVAEs中,在得到了 之后,会直接从 来推导出 。但这里作者在这里做了改进。 首先经过反卷积层deconv1D得到