GRELEN: Multivariate Time Series Anomaly Detection from the Perspective of Graph Relational Learning

系统监控和异常检测是日常运行中的一项重要任务。随着信息物理融合系统和IT系统的快速发展,多个传感器从不同角度表征系统状态,这启发我们在检测异常时考虑传感器之间的特征依赖关系,而不是关注单个传感器的行为。文中从传感器依赖关系学习的角度,提出了一种新颖的图关系学习网络(Graph Relational Learning Network, GReLeN)来检测多元时间序列异常变分自编码器(Variational AutoEncoder, VAE)作为特征提取和系统表示的整体框架。采用图神经网络(GNN)和随机图关系学习策略来捕获传感器之间的依赖关系。然后根据学习到的依赖结构显式地建立一个复合异常度量;在4个真实数据集上的实验表明,所提方法在检测精度、异常诊断和模型解释方面具有优势。

阅读者总结:这篇论文创新点提出利用 GCN学习多变量时间序列之间的关系,然后重建图,实现异常检测。但是这里在学习时间关系时,没有体现出时间序列动态变化性,和AAAI2020论文 没有区别性。

在解码器部分使用了图卷积网络,但是图卷积网络的输入是利用attention机制学习到的embedding,这导致学习到的图结构是否是时间序列变量之间的真实关系?1)按照文中所说,它是按照滑动窗口,学习embedding,然后进行每个窗口内的时间序列依赖关系图构建。这是不准确的。2)文中提出的异常检测是时间序列每个时间点上的异常检测,也就是每个滑动窗口内的点异常,那么在学习到的图中,怎么判断某个点是不是异常了?文中没有给出说明。比如判断图中孤立的节点是异常,或者出度等指标

显然,这篇论文很多方面没有说清楚,与KDD2020上的时间序列图卷积异常检测相比,缺点明显。

 注意:这里论文中是利用了一个变分自编码器学习每个时间序列之间的概率关系

 如图2所示,我们提出的异常检测结构由一个离线训练模块和一个在线测试模块组成。离线训练阶段利用正常的训练数据学习正常的传感器依赖关系以及数据重构机制。因此整个训练模型和正常模式能够获得

在在线测试阶段,该模型用于测试数据流,无需额外训练。通过监测测试数据的传感器依赖关系,实现异常检测与诊断。

 框架

(a) Encoder

利用self-attention机制实现

 

 

 

 Sampling

 decoder

 Objective Function and Training

 Experiments

 

 

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值