语音内容标注是对语音数据进行处理和分析的重要过程,目的是让人工智能系统能够理解和识别语音中的信息。目前常见的语音标注方法有多种。
语音转写是常见的标注形式,将语音数据转换成文本数据。例如 ASR 语音转写,通过和理解过程把语音信号转变为相应的文本或命令,常用于客服、教育培训机构、医疗、金融等领域。
语音切割是识别自然语言中的单词、音节或音素之间的边界的过程,是语音识别技术领域的一个重要子问题。进行语音分割需要考虑到语境、语法和语义。
情绪判定分析语音中的情绪信息,是实现自然人机交互的重要一环。人类的语音中包含了许多信息,语音中的情绪信息是反应人类情绪的一个十分重要的行为信号。
声纹识别标注通过对发声器尺寸和形态差异产生的声纹图谱差异进行标注,主要体现在共鸣方式特征、嗓音纯度特征、平均音高特征和音域特征这四个方面。声纹识别水平会受训练数据和算法的影响。
在标注过程中,还有一些规范及注意事项。标点符号的正确使用非常重要,要将语音中的标点符号正确地转化为文本中的标点符号。对于多人对话的语音数据,需要标明每个说话人所说的内容,可使用数字、字母或者说话人姓名等来表示。省略词要在标注中给出省略部分的完整文本形式。不同地区和语境中词语的发音标注要给出正确的发音方式,对于不太明确的方言,可按普通话标注。说话人的重复、犹豫和修正情况需明确表示,可使用重复符号等。特殊符号在标注中要给出正确的名称或者解释。在需要精确处理音频时,要添加时间戳。
此外,用于语音标注的方法还包括获取待标注的语音数据,生成与语音数据对应的第一识别结果和第二识别结果,基于两个识别结果确定语音数据的质量等级和/或缺陷类型,如语速过快、断句不明、背景嘈杂、语音重叠和存在方言等。同时,一些软件如 Praat 可用于语音标注,它可以对语音信号进行采集、分析及标注等多种操作。标注时可分“层”,按住 Ctrl