CLFA模型是一种多模态语义理解中的对比学习方法,主要用于处理文本和图像数据。该模型通过将文本和图像输入分别馈送到BERT(Devlin等人,2019)和ViT(Dosovitskiy等人,2021)中,以获得它们各自的表示。然后,通过对比学习,在CLIP表示的指导下,将文本和图像的不同表示投影到同一深度空间中,这是促进主要分类任务的子任务。
在模型的具体结构上,文本和图像特征被输入到交叉关注层中进行多模态融合,然后输入到分类层中预测结果。实验结果显示,CLFA模型在多模态情感分析(MMSA)和多模态讽刺检测(MMSD)数据集上显著优于多个基线模型,并且与包含外部知识的模型相比也取得了可比的结果。此外,文章还展示了CLFA方法在不同的跨模态聚合方法中的有效性,并且可以与其他基于知识的模型结合以获得更高的性能。
CLFA模型的具体实现细节是什么?
CLFA模型的具体实现细节主要涉及跨层级特征调整模块(Cross-Level Feature Adjustment,简称CLFA)的结构和工作原理。该模块用于处理图像中原始室内场景的几何空间位置关联性,以提高图像的语义理解和分类准确性。
CLFA模块由两个主要部分构成:Parallel adjustment和Attention mechanism。
-
Parallel adjustment部分:
- 上分支包含一个1×1卷积层和最大池化层,用于提升输入特征信息的通道数并缩小特征信息图尺寸。
- 下分支为3×3卷积层。
- 两个分支的输出像素叠加生成特征信息图F。