CLFA模型

CLFA模型是一种多模态语义理解中的对比学习方法,主要用于处理文本和图像数据。该模型通过将文本和图像输入分别馈送到BERT(Devlin等人,2019)和ViT(Dosovitskiy等人,2021)中,以获得它们各自的表示。然后,通过对比学习,在CLIP表示的指导下,将文本和图像的不同表示投影到同一深度空间中,这是促进主要分类任务的子任务。

在模型的具体结构上,文本和图像特征被输入到交叉关注层中进行多模态融合,然后输入到分类层中预测结果。实验结果显示,CLFA模型在多模态情感分析(MMSA)和多模态讽刺检测(MMSD)数据集上显著优于多个基线模型,并且与包含外部知识的模型相比也取得了可比的结果。此外,文章还展示了CLFA方法在不同的跨模态聚合方法中的有效性,并且可以与其他基于知识的模型结合以获得更高的性能。

CLFA模型的具体实现细节是什么?

CLFA模型的具体实现细节主要涉及跨层级特征调整模块(Cross-Level Feature Adjustment,简称CLFA)的结构和工作原理。该模块用于处理图像中原始室内场景的几何空间位置关联性,以提高图像的语义理解和分类准确性。

CLFA模块由两个主要部分构成:Parallel adjustment和Attention mechanism。

  1. Parallel adjustment部分

    • 上分支包含一个1×1卷积层和最大池化层,用于提升输入特征信息的通道数并缩小特征信息图尺寸。
    • 下分支为3×3卷积层。
    • 两个分支的输出像素叠加生成特征信息图F。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值