大模型中召回率是什么?

在大模型中,召回率(Recall)是一个重要的性能指标,用于衡量模型在所有实际为正类的样本中,能够正确预测出的比例。具体来说,召回率反映了模型对正类样本的识别能力,即在所有实际为正的样本中,有多少被模型正确识别为正类。

召回率的计算公式为:
Recall = TP TP + FN \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} Recall=TP+FNTP

其中,TP(True Positive)表示真正例的数量,即模型正确预测为正类的样本数;FN(False Negative)表示假反例的数量,即实际为正类但被模型错误地预测为负类的样本数。

在不同的应用场景中,召回率的重要性可能有所不同。例如,在医疗诊断等任务中,召回率可能比精更为重确率要,因为漏掉一个阳性病例可能会带来严重的后果。而在推荐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值