在大模型中,召回率(Recall)是一个重要的性能指标,用于衡量模型在所有实际为正类的样本中,能够正确预测出的比例。具体来说,召回率反映了模型对正类样本的识别能力,即在所有实际为正的样本中,有多少被模型正确识别为正类。
召回率的计算公式为:
Recall = TP TP + FN \text{Recall} = \frac{\text{TP}}{\text{TP} + \text{FN}} Recall=TP+FNTP
其中,TP(True Positive)表示真正例的数量,即模型正确预测为正类的样本数;FN(False Negative)表示假反例的数量,即实际为正类但被模型错误地预测为负类的样本数。
在不同的应用场景中,召回率的重要性可能有所不同。例如,在医疗诊断等任务中,召回率可能比精更为重确率要,因为漏掉一个阳性病例可能会带来严重的后果。而在推荐