MLA(Multi-head Latent Attention)是一种创新的注意力机制,旨在优化Transformer模型中的多头注意力(MHA)结构,特别是在推理阶段的效率和资源消耗方面。以下是关于MLA架构的详细分析:
-
基本概念与改进:
MLA是对传统多头注意力机制(MHA)的重要改进。在MHA中,每个注意力头都需要缓存独立的键(Key)和值(Value)矩阵,这在推理时会显著增加内存和计算开销。而MLA通过低秩联合压缩键值(Key-Value),将它们压缩为一个潜在向量(latent vector),从而大幅减少所需的缓存容量。 -
低秩压缩技术:
MLA利用低秩矩阵分解技术,将键值对压缩成低维的潜在向量。这种方法不仅减少了缓存的数据量,还保持了模型的性能。例如,传统的MHA需要存储 2 n h d h 2n_h d_h 2nhdh的数据量,而MLA将其降低到 d c