MLA(Multi-head Latent Attention)架构

MLA(Multi-head Latent Attention)是一种创新的注意力机制,旨在优化Transformer模型中的多头注意力(MHA)结构,特别是在推理阶段的效率和资源消耗方面。以下是关于MLA架构的详细分析:

  1. 基本概念与改进
    MLA是对传统多头注意力机制(MHA)的重要改进。在MHA中,每个注意力头都需要缓存独立的键(Key)和值(Value)矩阵,这在推理时会显著增加内存和计算开销。而MLA通过低秩联合压缩键值(Key-Value),将它们压缩为一个潜在向量(latent vector),从而大幅减少所需的缓存容量。

  2. 低秩压缩技术
    MLA利用低秩矩阵分解技术,将键值对压缩成低维的潜在向量。这种方法不仅减少了缓存的数据量,还保持了模型的性能。例如,传统的MHA需要存储 2 n h d h 2n_h d_h 2nhdh的数据量,而MLA将其降低到 d c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值