模型结构创新(MLA+DeepSeekMoE*)

模型结构创新(MLA+DeepSeekMoE)主要体现在DeepSeek-V2模型中,该模型通过结合MLA(Multi-head Latent Attention)架构和自研的DeepSeekMoE稀疏结构,实现了显著的性能提升和成本降低。

  1. MLA架构:MLA是一种多头潜意识注意力机制,旨在减少计算量和推理显存。与传统的MHA(Multi-head Attention)相比,MLA通过低秩键值联合压缩和解耦旋转位置嵌入(RoPE),大幅降低了重复运算的开销,从而提高了推理效率。
    此外,MLA还通过减少KV缓存的需求,进一步优化了推理性能。

  2. DeepSeekMoE稀疏结构:DeepSeekMoE是一种混合专家模型,通过细粒度专家分割和共享专家隔离策略,将计算资源分配给最相关的专家,从而捕捉通用信息和针对性信号。这种稀疏结构不仅减少了参数冗余,还降低了整体计算量,使得模型在保持强大性能的同时,显著降低了训练和推理成本。

  3. 性能与成本优势:DeepSeek-V2通过MLA和DeepSeekMoE的结合,实现了跨级别的性能提升。例如,在中文和英文综合能力测试中,DeepSeek-V2的表现与GPT-4-Turbo相当,甚至在某些领域超越了其他开源模型。同时,其API调用成本仅为GPT-4-Turbo的百分之一,显示出极高的性价比。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值