多头潜在注意力(MLA)是怎么来的,什么原理,能用简单的示例解释么

多头潜在注意力(Multi-Head Latent Attention,简称MLA)是一种改进的注意力机制,旨在提高自然语言处理(NLP)模型的推理效率和性能。其核心思想是通过低秩联合压缩键(Key)和值(Value),减少推理过程中所需的内存和计算资源,从而实现更高效的处理。

MLA的原理

在传统的多头注意力机制(MHA)中,每个输入token的键和值需要被缓存,这导致了巨大的内存开销。具体来说,对于每个注意力头,键和值的维度分别为

,因此每个token需要缓存$2n_hd_h

n_h$是注意力头的数量。

MLA通过将键和值压缩成一个低秩的潜在向量(latent vector),显著减少了缓存的需求。具体来说,MLA首先将输入token的特征压缩成一个小维度的潜在向量,然后通过简单的变换将其扩展到各个注意力头所需的键和值空间。这种方法不仅减少了缓存的大小,还保持了与标准MHA相当的性能。

MLA的优势

  1. 减少内存占用:MLA通过低秩压缩技术减少了键值缓存的需求,从而降低了推理过程中的内存消耗。
  2. 提高推理效率:由于缓存的大小大幅减少,MLA能够更快地生成输出,提升了模型的吞吐量。
  3. 保持性能:尽管进行了压缩,MLA仍然能够捕捉到输入数据中的重要特征,从而保持了较高的输出质量。

简单示例

假设我们有一个输入序列,每个token的嵌入维度为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值