多头潜在注意力(Multi-Head Latent Attention,简称MLA)是一种改进的注意力机制,旨在提高自然语言处理(NLP)模型的推理效率和性能。其核心思想是通过低秩联合压缩键(Key)和值(Value),减少推理过程中所需的内存和计算资源,从而实现更高效的处理。
MLA的原理
在传统的多头注意力机制(MHA)中,每个输入token的键和值需要被缓存,这导致了巨大的内存开销。具体来说,对于每个注意力头,键和值的维度分别为
,因此每个token需要缓存$2n_hd_h
n_h$是注意力头的数量。
MLA通过将键和值压缩成一个低秩的潜在向量(latent vector),显著减少了缓存的需求。具体来说,MLA首先将输入token的特征压缩成一个小维度的潜在向量,然后通过简单的变换将其扩展到各个注意力头所需的键和值空间。这种方法不仅减少了缓存的大小,还保持了与标准MHA相当的性能。
MLA的优势
- 减少内存占用:MLA通过低秩压缩技术减少了键值缓存的需求,从而降低了推理过程中的内存消耗。
- 提高推理效率:由于缓存的大小大幅减少,MLA能够更快地生成输出,提升了模型的吞吐量。
- 保持性能:尽管进行了压缩,MLA仍然能够捕捉到输入数据中的重要特征,从而保持了较高的输出质量。
简单示例
假设我们有一个输入序列,每个token的嵌入维度为