中西医结合模块中四诊信息结构化转化方法与辨证算法的中医理论依据

一、中医四诊信息结构化转化的技术路径

中西医结合模块通过多模态数据整合与人工智能技术,将传统中医四诊信息转化为可量化、可分析的结构化数据,具体实现路径如下:

1. 四诊数据采集标准化
  • 望诊数字化

    • 舌象采集:采用超几何分割算法提取舌体轮廓,通过HSV色彩空间分析舌苔厚度与颜色(如淡白、红绛等),建立基于深度残差网络的舌象分类模型(准确率>92%)。
    • 面诊分析:利用高光谱成像技术捕捉面部光泽度分布,结合PLS(偏最小二乘法)与LDA(线性判别分析)区分气血虚实状态。
  • 闻诊客观化

    • 语音分析:通过梅尔频率倒谱系数(MFCC)提取咳嗽声频谱特征,建立基于LSTM的肺系疾病鉴别模型(AUC 0.88)。
    • 气味识别:电子鼻技术结合气相色谱-质谱联用(GC-MS),构建慢性胃炎患者气味图谱数据库(可区分湿热证与寒湿证)。
  • 问诊结构化

    • 自然语言处理:基于中医BERT模型对自由文本进行实体识别(症状、证候等),通过双向注意力机制实现"胃脘隐痛"→"定位:胃脘;性质:隐痛"的精准映射。
    • 智能量表系统:采用Rasch模型动态调整问诊条目,根据患者回答实时生成后续问题(问题数量减少30%,信息完整度提升25%)。
  • 切诊量化

    • 脉象采集:三维柔性传感器阵列(128个压力传感单元)记录寸关尺三部脉象波形,通过连续小波变换提取脉位、脉力、脉律等28维特征。
    • 腹诊压力分布:压敏薄膜传感器网格(分辨率0.1kPa)绘制腹部拒按/喜按区域热力图,结合肝郁气滞证患者的胁下压痛模式库进行匹配。
2. 多模态数据融合架构
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百态老人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值