一、中医四诊信息结构化转化的技术路径
中西医结合模块通过多模态数据整合与人工智能技术,将传统中医四诊信息转化为可量化、可分析的结构化数据,具体实现路径如下:
1. 四诊数据采集标准化
-
望诊数字化:
- 舌象采集:采用超几何分割算法提取舌体轮廓,通过HSV色彩空间分析舌苔厚度与颜色(如淡白、红绛等),建立基于深度残差网络的舌象分类模型(准确率>92%)。
- 面诊分析:利用高光谱成像技术捕捉面部光泽度分布,结合PLS(偏最小二乘法)与LDA(线性判别分析)区分气血虚实状态。
-
闻诊客观化:
- 语音分析:通过梅尔频率倒谱系数(MFCC)提取咳嗽声频谱特征,建立基于LSTM的肺系疾病鉴别模型(AUC 0.88)。
- 气味识别:电子鼻技术结合气相色谱-质谱联用(GC-MS),构建慢性胃炎患者气味图谱数据库(可区分湿热证与寒湿证)。
-
问诊结构化:
- 自然语言处理:基于中医BERT模型对自由文本进行实体识别(症状、证候等),通过双向注意力机制实现"胃脘隐痛"→"定位:胃脘;性质:隐痛"的精准映射。
- 智能量表系统:采用Rasch模型动态调整问诊条目,根据患者回答实时生成后续问题(问题数量减少30%,信息完整度提升25%)。
-
切诊量化:
- 脉象采集:三维柔性传感器阵列(128个压力传感单元)记录寸关尺三部脉象波形,通过连续小波变换提取脉位、脉力、脉律等28维特征。
- 腹诊压力分布:压敏薄膜传感器网格(分辨率0.1kPa)绘制腹部拒按/喜按区域热力图,结合肝郁气滞证患者的胁下压痛模式库进行匹配。