近日,阿里巴巴在深夜推出了全新的开源视频生成模型 Wan2.1,该模型凭借14B 的参数量迅速占据了 VBench 榜单的顶端,成为目前视频生成领域的佼佼者。与此之前发布的 QwQ-Max 不同,Wan2.1在复杂运动的细节处理上表现出色,能够流畅地实现多个人物的同步舞蹈,令人惊叹不已。
官方演示中,Wan2.1不仅成功克服了静态图像生成中的难题,如文字的处理更是达到了新的高度。对于普通用户来说,虽然14B 的参数在个人消费级显卡上部署较为困难,但阿里还特别推出了一个1.3B 的小版本,支持480P 分辨率,使用12GB 显存的4070显卡即可流畅运行(本人在Kaggle的 P100 16GB vram 没测试出来)。
除了14B 和1.3B 版本,阿里还发布了两个额外的视频生成模型,均采用 Apache2.0协议,意味着用户可以免费商用。在实际操作中,用户可以通过阿里提供的平台访问这款模型,快速生成视频,但由于用户量激增,有时可能会出现等待时间过长的情况。对于有一定技术基础的用户,还可以通过 HuggingFace 和魔搭社区等多种途径自行安装和调试。
Wan2.1最大的亮点在于其技术创新。该模型采用了 Diffusion Transformer 架构,并使用3D 变分自动编码器,专门为视频生成设计。通过引入多种压缩和并行策略,该模型在保证质量的同时,大幅度提高了生成效率。研究表明,Wan 的重建速度是当前同类技术的2.5倍,大大节省了计算资源。
在用户体验方面,Wan2.1也获得了众多好评。无论是生成动态场景中的细节,还是自然的物理效果,模型的表现都让人眼前一亮。用户们通过该模型不仅能够制作出高质量的视频作品,还能轻松实现文字的动态呈现,为创作带来了更多可能。
快速上手
克隆库:
git clone https://github.com/Wan-Video/Wan2.1.git
cd Wan2.1
安装依赖:
# Ensure torch >= 2.4.0
pip install -r requirements.txt
模型下载
Models | Download Link | Notes |
---|---|---|
T2V-14B | 🤗 Huggingface 🤖 ModelScope | Supports both 480P and 720P |
I2V-14B-720P | 🤗 Huggingface 🤖 ModelScope | Supports 720P |
I2V-14B-480P | 🤗 Huggingface 🤖 ModelScope | Supports 480P |
T2V-1.3B | 🤗 Huggingface 🤖 ModelScope | Supports 480P |
💡注:1.3B 模型能够生成 720P 分辨率的视频。不过,由于在此分辨率下的训练有限,结果通常不如 480P 稳定。为获得最佳性能,我们建议使用 480P 分辨率。
使用 huggingface-cli 下载模型:
pip install "huggingface_hub[cli]"
huggingface-cli download Wan-AI/Wan2.1-T2V-14B --local-dir ./Wan2.1-T2V-14B
使用 modelscope-cli 下载模型:
pip install modelscope
modelscope download Wan-AI/Wan2.1-T2V-14B --local_dir ./Wan2.1-T2V-14B
Task | Resolution | Model | |
---|---|---|---|
480P | 720P | ||
t2v-14B | ✔️ | ✔️ | Wan2.1-T2V-14B |
t2v-1.3B | ✔️ | ❌ | Wan2.1-T2V-1.3B |
单显卡推理
python generate.py --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
如果遇到 OOM(内存不足)问题、您可以使用 --offload_model True
和 --t5_cpu
选项可减少 GPU 内存使用量。例如,在 RTX 4090 GPU 上:
python generate.py --task t2v-1.3B --size 832*480 --ckpt_dir ./Wan2.1-T2V-1.3B --offload_model True --t5_cpu --sample_shift 8 --sample_guide_scale 6 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
注意:如果您使用的是
T2V-1.3B
模型,我们建议设置参数--sample_guide_scale 6
。--sample_shift 参数
可根据性能在 8 到 12 的范围内调整。
- 使用 FSDP + xDiT USP 进行多 GPU 推理
pip install "xfuser>=0.4.1"
torchrun --nproc_per_node=8 generate.py --task t2v-14B --size 1280*720 --ckpt_dir ./Wan2.1-T2V-14B --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
Github:https://github.com/Wan-Video/Wan2.1