🎉🎉🎉 近日,奇虎 360 对其自主研发的 7B 参数模型 360Zhinao3-7B 进行了开源升级。目前,该模型已在 Github 开源社区 360zhinao3 上发布,并可免费用于商业用途。该模型的功能得到了全面提升。与小于 10B 的小参数模型相比,360Zhinao3-7B 在多个基准测试中取得了第一名的优异成绩。
- 360Zhinao3-7B
- 360Zhinao3-7B-Instruct
- 360Zhinao3-7B-O1.5
我们的 360Zhinao3 型号的显著特点是:
360Zhinao3-7B 是在 360Zhinao2-7B 的基础上使用 700B 高质量词块进行持续预训练的。两个模型的结构完全相同。模型性能的提高主要源于训练数据质量的提高。
模型评估
基本型号
我们使用开源工具 opencompass 对模型进行了多维度评估。该模型的基准平均得分在参数小于 10B 的模型中排名第一。在同等规模的模型中,它具有很强的竞争力。
Type | Datasets | language | glm4-9b | Qwen2.5-7B | internlm2.5-7b | Yi1.5-9B | gemma2-9b | Llama3.1-8B | 360Zhinao2-7B | 360Zhinao3-7B |
Exam | ceval | zh | 75.83 | 81.41 | 77.71 | 73.51 | 56.36 | 51.67 | 83.04 | 84.7 |
mmlu | en | 75.5 | 75.5 | 71.55 | 71.43 | 72.22 | 66.75 | 67.84 | 75.42 | |
cmmlu | zh | 74.24 | 81.79 | 78.77 | 74.2 | 58.89 | 52.49 | 73.8 | 82.17 | |
ARC-c | en | 94.92 | 80 | 85.08 | 87.46 | 77.63 | 80.68 | 87.12 | 88.14 | |
ARC-e | en | 98.41 | 84.83 | 95.24 | 94.53 | 78.84 | 89.77 | 92.77 | 94 | |
Language | WiC | en | 51.57 | 52.82 | 50.78 | 50.63 | 50.47 | 50 | 49.84 | 50.31 |
WSC | en | 68.27 | 68.27 | 69.23 | 66.35 | 68.27 | 67.31 | 65.38 | 71.15 | |
Knowledge | BoolQ | en | 81.8 | 83.88 | 89.51 | 84.46 | 85.6 | 82.2 | 88.29 | 88.38 |
commonsense_qa | en | 71.17 | 73.22 | 68.55 | 71.58 | 68.47 | 71.25 | 69.78 | 71.33 | |
Understanding | C3 | zh | 91.51 | 92 | 93.04 | 85.86 | 81.64 | 83.51 | 93.26 | 92.77 |
race-middle | en | 91.99 | 91.02 | 92.06 | 91.16 | 88.09 | 81.69 | 90.46 | 90.04 | |
race-high | en | 90.71 | 87.91 | 90.08 | 88.34 | 82.08 | 78.73 | 86.74 | 85.96 | |
lcsts | zh | 18.29 | 15.82 | 15.96 | 16.49 | 10.62 | 17.29 | 18.61 | 18.85 | |
eprstmt-dev | zh | 91.88 | 86.88 | 91.25 | 91.88 | 48.12 | 83.12 | 90 | 92.50 | |
lambada | en | 71.67 | 71.14 | 69.98 | 70.64 | 75.43 | 74.23 | 72.56 | 68.17 | |
Reasoning | hellaswag | en | 70.25 | 72.76 | 70.38 | 71.55 | 66.83 | 74.65 | 71.49 | 73.61 |
siqa | en | 81.73 | 72.52 | 78.97 | 76.2 | 58.96 | 64.18 | 77.12 | 79.02 | |
bbh | en | 73.68 | 54.63 | 59.43 | 67.86 | 68.45 | 59.9 | 46.54 | 73.74 | |
Code | humaneval | en | 69.51 | 75 | 60.37 | 26.22 | 5.49 | 27.44 | 60.98 | 64.63 |
mbpp | en | 60 | 60 | 43.6 | 56.8 | 51.2 | 42.6 | 54 | 67.80 | |
Math | math | en | 26.86 | 38 | 27.14 | 27.06 | 28.52 | 15.32 | 38.34 | 37.60 |
gsm8k | en | 78.54 | 79.76 | 52.54 | 71.11 | 73.09 | 56.25 | 75.51 | 78.77 | |
Overall | avg_zh | 70.35 | 71.58 | 71.35 | 68.39 | 51.13 | 57.62 | 71.74 | 74.20 | |
avg_all | 73.11 | 71.78 | 69.60 | 68.88 | 61.60 | 62.32 | 70.61 | 74.83 |
Instruct Model
We have evaluated and compared the 360Zhinao3-7B-Instruct model on three popular evaluations: IFEval, MT-bench, and CF-Bench. MT-bench and CFBench both rank first among open-source models of the same level and have strong competitiveness. In IFEval (prompt strict), it is second only to glm4-9b and has the highest score in the 7B size.
Model | MT-bench | IFEval(strict prompt) | CFBench(CSR,ISR,PSR) | ||
---|---|---|---|---|---|
Qwen2.5-7B-Instruct | 8.07 | 0.556 | 0.81 | 0.46 | 0.57 |
Yi-9B-16k-Chat | 7.44 | 0.455 | 0.75 | 0.4 | 0.52 |
GLM4-9B-Chat | 8.08 | 0.634 | 0.82 | 0.48 | 0.61 |
InternLM2.5-7B-Chat | 7.39 | 0.540 | 0.78 | 0.4 | 0.54 |
360Zhinao2-7B-Chat-4k | 7.86 | 0.577 | 0.8 | 0.44 | 0.57 |
360Zhinao3-7B-Instruct | 8.17 | 0.626 | 0.83 | 0.52 | 0.64 |
Long COT Model
我们利用之前开源的知网Light-R1方法,继续微调了360知网3-7B-Instruct的长COT,以及RFT和GRPO。与最新的OpenThinker2-7B相比仍有一定差距,但已经超越了以往所有基于通用Qwen2.5-7B-Instruct的模型。
Model | Date | Base Model | AIME24 | AIME25 | GPQA Diamond |
---|---|---|---|---|---|
OpenThinker2-7B | 25.4.3 | Qwen2.5-7B-Instruct | 50 | 33.3 | 49.3 |
OpenThinker-7B | 25.1.28 | Qwen2.5-7B-Instruct | 31.3 | 23.3 | 42.4 |
360Zhinao3-7B-O1.5 | 25.4.14 | 360Zhinao3-7B-Instruct | 54.2 | 36.3 | 40.0 |
OpenR1-Qwen-7B | 25.2.11 | Qwen2.5-Math-7B-Instruct | 48.7 | 34.7 | 21.2 |
DeepSeek-R1-Distill-Qwen-7B | 25.1.20 | Qwen2.5-Math-7B-Instruct | 57.3 | 33.3 | 47.3 |
Light-R1-7B-DS | 25.3.12 | DeepSeek-R1-Distill-Qwen-7B | 59.1 | 44.3 | 49.4 |
Areal-boba-RL-7B | 25.3.31 | DeepSeek-R1-Distill-Qwen-7B | 61.9 | 48.3 | 47.6 |
快速入门
一个简单的例子来说明如何快速使用 360Zhinao3-7B、360Zhinao3-7B-Instruct 和 360Zhinao3-7B-O1.5,以及 🤗 Transformers
基础模型推理演示
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao3-7B"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True).cuda()
generation_config = GenerationConfig.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
generation_config.max_new_tokens = 1024
inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
inputs = inputs.to(model.device)
pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
指令模型推理演示
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao3-7B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True).cuda()
generation_config = GenerationConfig.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
generation_config.max_new_tokens = 2048
messages = []
#round-1
print(f"user: 简单介绍一下刘德华")
messages.append({"role": "user", "content": "简单介绍一下刘德华"})
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
pred = model.generate(input_ids=input_ids, generation_config=generation_config)
response = tokenizer.decode(pred.cpu()[0][len(input_ids[0]):], skip_special_tokens=True)
messages.append({"role": "assistant", "content": response})
print(f"gpt: {response}")
#round-1
print(f"user: 他有什么代表作?")
messages.append({"role": "user", "content": "他有什么代表作?"})
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
pred = model.generate(input_ids=input_ids, generation_config=generation_config)
response = tokenizer.decode(pred.cpu()[0][len(input_ids[0]):], skip_special_tokens=True)
messages.append({"role": "assistant", "content": response})
print(f"gpt: {response}")
长 COT 模型推理演示
import re
import json
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig
MODEL_NAME_OR_PATH = "qihoo360/360Zhinao3-7B-O1.5"
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True).cuda()
generation_config = GenerationConfig.from_pretrained(
MODEL_NAME_OR_PATH,
trust_remote_code=True)
generation_config.max_new_tokens = 2048
def extract_thinking_and_answer(input_string):
thinking, answer = "", ""
# 提取答案
pattern_answer = r'.*</think>(.*)$'
match_answer = re.search(pattern_answer, input_string, re.S)
if match_answer:
answer = match_answer.group(1)
else:
return thinking, input_string
# 提取思考过程
pattern_thinking = r'<think>(.*?)</think>'
match_thinking = re.search(pattern_thinking, input_string, re.S)
if match_thinking:
thinking = match_thinking.group(1)
return thinking, answer
messages = []
messages.append({"role": "user", "content": "现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,求鸡和兔子各有多少只?"})
input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
pred = model.generate(input_ids=input_ids, generation_config=generation_config)
response = tokenizer.decode(pred.cpu()[0][len(input_ids[0]):], skip_special_tokens=True)
thinking, answer = extract_thinking_and_answer(response)
messages.append({"role": "assistant", "content": answer, "reasoning_content": thinking})
print(json.dumps(messages, ensure_ascii=False, indent=4))