1 引言
- 使用单像素点愚弄深度神经网络。2017 CVPR 论文地址
- 对抗样本生成的一种策略。
- 本文采取一种独立思考的方式,来理解与讲解这篇论文。
2 算法原理
2.1 第一印象
- what the fuck?改变一个像素点就能使网络分类错误?想法great,但怎么可能
- 逐渐冷静。。。单像素点真的能攻击成功?
2.2 初步设想
- Can we:貌似 ”goodfellow的模型高度线性化,使得图像会有扰动放大效应“ 为改设想提供了一定的理论依据。
- How:假设确实改动某个像素点的值能实现对抗攻击。那如何去做?
- Ask:既然只是更改一个像素点,自然而然,我们想到暴力求解可不可行?
- Answer:如果用cifar数据集,一张图片意味着要进行 32 * 32 * 3 * 256次迭代。代价太大,不可行。
- Ask:那梯度求解方式?
- Answer:类似FGSM用梯度求解,是建立在基本改变图片全部像素点的前提下。这种场景和只改动单个像素点差远了。
- Ask:那进化算法总行吧?既能实现黑盒攻击,问题解空间也不大。进化算法:你直接报我身份证得了。想要详细与进化算法深入接触?跳转
- Focus(注意了哈):作者提出使用差分进化算法来求解。恭喜你,最终还是说对了。
2.3 在此之前
- 先抛开差分进化不管。首先 Focus on 优化目标,即我们要找的那个像素点应该满足何种标准。
max e ( x ) f a d v ( x + e ( x ) ) s u b j e c t t o ∣ ∣ e ( x ) ∣ ∣ 0 ≤ d \max_{e(x)} f_{adv}\left(x+e(x)\right)\\ subject\; to \qquad ||e(x)||_0\le d\\ e(x)maxfadv(x+e(x))subjectto∣∣e(x)∣∣0≤d
f :