大白话之One Pixel Attack for Fooling Deep Neural Networks论文讲解

1 引言

  • 使用单像素点愚弄深度神经网络。2017 CVPR 论文地址
  • 对抗样本生成的一种策略。
  • 本文采取一种独立思考的方式,来理解与讲解这篇论文。

2 算法原理

2.1 第一印象
  • what the fuck?改变一个像素点就能使网络分类错误?想法great,但怎么可能
  • 逐渐冷静。。。单像素点真的能攻击成功?
2.2 初步设想
  • Can we:貌似 ”goodfellow的模型高度线性化,使得图像会有扰动放大效应“ 为改设想提供了一定的理论依据。
  • How:假设确实改动某个像素点的值能实现对抗攻击。那如何去做?
  • Ask:既然只是更改一个像素点,自然而然,我们想到暴力求解可不可行?
  • Answer:如果用cifar数据集,一张图片意味着要进行 32 * 32 * 3 * 256次迭代。代价太大,不可行。
  • Ask:那梯度求解方式?
  • Answer:类似FGSM用梯度求解,是建立在基本改变图片全部像素点的前提下。这种场景和只改动单个像素点差远了。
  • Ask:那进化算法总行吧?既能实现黑盒攻击,问题解空间也不大。进化算法:你直接报我身份证得了。想要详细与进化算法深入接触?跳转
  • Focus(注意了哈):作者提出使用差分进化算法来求解。恭喜你,最终还是说对了。
2.3 在此之前
  • 先抛开差分进化不管。首先 Focus on 优化目标,即我们要找的那个像素点应该满足何种标准。
    max ⁡ e ( x ) f a d v ( x + e ( x ) ) s u b j e c t    t o ∣ ∣ e ( x ) ∣ ∣ 0 ≤ d \max_{e(x)} f_{adv}\left(x+e(x)\right)\\ subject\; to \qquad ||e(x)||_0\le d\\ e(x)maxfadv(x+e(x))subjecttoe(x)0d

f :

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值