行列式

什么是行列式?

行列式是线性变换的伸缩因子。

理解行列式一定要从线性变换出发去理解,直接去理解它的代数形式是没有意义的。

1 线性变换的几何直观

线性变换的几何直观有三个要点:

  • 变换前是直线的,变换后依然是直线
  • 直线比例保持不变
  • 变换前是原点的,变换后依然是原点

比如说旋转:

这里写图片描述

这里写图片描述
比如说推移:

这两个叠加也是线性变换:

自己动手试一下(观察下是否符合之前的三个要求):
Created with GeoGebra

2 实现线性变换的矩阵

矩阵可以讲的东西非常多,我这里通过一个具体的例子来展示下矩阵是如何完成线性变换的。

我把基画出来的原因是因为矩阵变换的其实是基。
举例子来看看,比如旋转(旋转矩阵Trotate=[cos(θ)−sin(θ)sin(θ)cos(θ)]Trotate=[cos(θ)−sin(θ)sin(θ)cos(θ)]):

如果要说详细点,实际上:

我们只需要旋转基,就可以完成正方形的旋转:

下面我们看看正方形的旋转过程中,旋转矩阵和基是怎样变化的(为了方便观察旋转,我标记出一个顶点):
Created with GeoGebra
再给一个例子,看看推移是怎么改变基的:

3 行列式

3.1 行列式是线性变换的伸缩因子
我们还是拿旋转矩阵来举例子:

什么意思?我们来看看:

在继续往下面讲之前,我设计了一个动画,让你来感受一下,变换矩阵的行列式由正到负,线性变换会怎样进行(我把基也标注出来):
Created with GeoGebra
掌握了行列式是线性变换的伸缩因子这一点之后,我们就很容易理解各种行列式的值与线性变换的关系。
3.2 行列式>0
行列式>1,很显然对于图形有放大的作用:

行列式=1,图形的大小不会变换:

0
3.3 行列式=0
行列式等于0,有一个重要的结论是,矩阵不可逆。这点也很好理解。
先看看什么是可逆。原始的图形是这个样子:

通过旋转矩阵,逆时针旋转45∘45∘:

再通过另外一个旋转矩阵,顺时针旋转45∘45∘:

看起来这个正方形就像没有变换过一样,因此[cos(−45∘)−sin(−45∘)sin(−45∘)cos(−45∘)][cos(−45∘)−sin(−45∘)sin(−45∘)cos(−45∘)]和[cos(45∘)−sin(45∘)sin(45∘)cos(45∘)][cos(45∘)−sin(45∘)sin(45∘)cos(45∘)]互为逆矩阵。
有的线性变换是可逆的,有的不行,比如行列式=0这样的线性变换就是不可逆的。从图像上看,图形会缩成一点:

或者缩成一条直线:

没有矩阵可以把它们恢复成原来的样子。
这就好比摔碎的鸡蛋、泼出去的水、破了的镜子:

所谓覆水难收、破镜难圆就是这个意思。
3.4 行列式
原始图像是这样的:

被行列式
行列式

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值