线性代数学习笔记6-1:行列式与线性变换

行列式:用面积的变化描述线性变换的效果

之前说过,线性变换就是一种操纵空间和变换坐标轴的手段,它保持原点固定且网格平行等距;
有的线性变换将空间拉伸,有的线性变换将空间向内挤压(如剪切/切变变换),有的甚至将空间压缩至维度降低(对应的矩阵中列向量线性相关)

那么,如何衡量线性变换对空间的拉伸/压缩效果呢?或者更具体的,给定一个区域,如何测量其面积增大/缩小的比例呢?

  • 我们只考虑一个1x1的单位正方形(即两个基向量围成的区域)面积变化的情况
    在这里插入图片描述
    可见,经过一个线性变换后,其面积变为3x2=6倍
  • 一般的,这种面积缩放的比例如何计算呢?——用行列式
    在这里插入图片描述
    上图证明了,矩阵行列式determinant(的绝对值),就是相应线性变换后任一区域的面积变化比例
  • 那考虑其他区域面积的变化情况呢?
    实际上,上面的1x1正方形的面积变化已经说明了一切:
    ①其他矩形区域的面积变化比例与之相同(这是由于线性变换的比例性决定的);
    ②而对于一般的不规则区域,可以用微分思想,将其视作由无数不规则的小正方形组成,面积变化比例也与正方形相同。

行列式为何有正负?

行列式为负值,一个区域如何缩放“负数倍”呢?
实际上,这与数学上的定向Orientation的概念有关。

  • 对于二维空间,原来的基向量 i \boldsymbol i i位于 j \boldsymbol j j的右侧,如果线性变换后, i ′ \boldsymbol i' i位于 j ′ \boldsymbol j' j的左侧,这就改变了空间的定向(理解为一张纸被翻转到另一面,感觉像这个变化让空间“翻转”了),此时行列式为负值
  • 对于三维空间同理,原来三个基向量满足坐标系的右手定则,如果变换后不满足了,则空间的定向被改变,此时行列式为负值

如何直观理解空间定向的改变与行列式负值(负的面积改变)的关系呢?
考虑二维空间中的一个剪切变换:
i \boldsymbol i i轴逐渐靠近 j \boldsymbol j j轴,过程中空间不断被压缩,因此行列式为正值且不断减小;
当两个轴重合,此时的变换使得空间降维至一条线,所有面积变为0,因此行列式为0;
i \boldsymbol i i轴继续逆时针转动,逐渐远离 j \boldsymbol j j轴,空间定向改变,行列式继续减小为负值,但是过程中空间又扩张了,因此行列式绝对值(面积变化比例)又开始增大了

总之,严格来说,行列式表示有向面积/有向体积(三维时就是体积)的变化比例
或者说,行列式的绝对值表示相应几何图形的面积/体积,其中,这个几何图形的所有由行列式的行/列向量给出(理解为:原来在标准正交坐标系,坐标轴围成的几何图形的面积/体积为1,故变化比例=线性变换后的图形面积/体积)

行列式为0

根据上面的讨论,行列式为0(i.e. 面积变化比例为0)说明面积被压缩为0,也就是说,空间被压缩至降维!那么对应的矩阵必然列线性相关(变换后有多余基向量无法张成更高维空间,也即基向量线性相关)

注意前提:方阵才有行列式!

几何意义:

  • 当变换前后,空间的维度相同(变换矩阵是方阵),我们考虑“有向面积/体积”的变化比例才有意义
  • 如果变换后,空间维度已经被压缩(变换矩阵不是方阵),那就没必要看行列式了
    (少一个维度怎么谈论“体积”呢?或着,可以简单理解为此时“行列式”即面积缩放比例为0,没必要再讨论了)

总结

  • 矩阵的行列式是一个数,它衡量了线性变换对于空间的拉伸/压缩效果
  • 行列式表示有向面积/有向体积(三维时就是体积)的变化比例
    行列式的正负:表示空间定向是否改变
    行列式的绝对值:表示面积/体积的缩放比例
  • 用几何的思想理解行列式是有意义的,例如可以简单的证明 d e t ( M 1 M 2 ) = d e t ( M 1 ) d e t ( M 2 ) det\mathbf {(M_1M_2)}=det\mathbf {(M_1)}det\mathbf {(M_2)} det(M1M2)=det(M1)det(M2)
  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: MIT(麻省理工学院)的线性代数公开课非常详细和全面,这门课程是由麻省理工学院的教授Gilbert Strang主讲的。课程内容涵盖了线性代数的基本概念和应用,将线性代数的理论与实践相结合。 这门课程的笔记非常详细,内容包括了课堂讲义、示例问题的详细解析、证明过程和习题答案等等。课程的整个结构非常清晰,从基础的向量、矩阵行列式开始讲解,逐渐深入到线性方程组、特征值和特征向量、相似矩阵等内容。 在笔记中,每个概念和理论都会进行详细的解释和证明,帮助学生更好地理解和掌握相关知识。同时,笔记还提供了丰富的示例和习题,让学生通过实际的问题来巩固和应用所学知识。 另外,笔记中还有大量的图表、图示和实例来帮助学生直观地理解和记忆各种概念和算法。特别是对于抽象的概念,通过图形化的解释可以更好地帮助学生理解。 总之,MIT的线性代数公开课的笔记内容非常详细和全面,适合对线性代数感兴趣的学生参考。无论是作为学习线性代数的资料,还是作为复习和巩固知识的辅助材料,这些笔记都是非常有价值的资源。无论是在理论还是应用层面,学生都能够通过这些笔记全面地掌握线性代数的知识。 ### 回答2: MIT线性代数公开课是由麻省理工学院开设的一门线性代数课程,涵盖了从基础概念到高阶技巧的全方位学习内容。下面是对该课程的笔记总结: 该课程由吉尔伯特•斯特朗(Gilbert Strang)教授主讲,他是一位著名的数学家和教育家,为学生提供了一种简单而深入的学习方法。 该课程共分为26节课,每节课都有对应的讲义和视频,以及一些习题和作业,使学生能够更好地掌握课程内容。 课程首先介绍了向量和矩阵的基础知识,讲解了向量的加法、减法和数乘运算,以及矩阵的加法、减法和乘法运算,并且讲解了这些运算的几何意义。然后,课程进一步探讨了线性方程组的求解方法,包括高斯消元法和矩阵的逆运算。这些内容为后续课程奠定了基础。 接下来,课程介绍了行列式和特征值的概念,并讲解了如何计算行列式和求解特征值和特征向量。特征值和特征向量在矩阵变换中起着重要的作用,因此对于理解线性代数的应用非常重要。 随后,课程进一步深入探讨了线性变换、正交性和投影等概念,以及特殊矩阵的性质,如对称矩阵和正定矩阵。这些内容使学生能够更好地理解线性代数在实际应用中的重要性。 最后,课程介绍了一些高级线性代数的内容,如奇异值分解和特殊矩阵的标准形式。这些内容对于研究生和专业领域的学生尤为重要。 总的来说,MIT线性代数公开课提供了一套完整、系统的线性代数学习资源,不仅适用于初学者,还可以帮助已经具备一定线性代数基础的学生深入学习。课程中的讲义和视频内容清晰明了,配有大量实例和习题,以及讲解中的实时演算,确保学生能够深入理解和掌握线性代数的核心概念和技巧。无论是在学术研究还是职业发展中,这门课程都具有重要的参考价值。 ### 回答3: 麻省理工学院(MIT)的线性代数公开课是一门非常出色的公开课,内容十分详细并且完整。以下是对该公开课的超详细笔记。 该公开课以线性代数为主题,通过教授线性代数的基本概念、理论和应用,帮助学生建立起对线性代数的深入理解和应用能力。 课程从基本概念讲起,首先介绍了向量和矩阵的定义、性质和操作。然后深入讲解了线性方程组的解法,包括高斯消元法和矩阵行列式。接下来,课程探讨了向量空间和矩阵空间的性质及其应用,如子空间、基、维数等概念。进一步,课程讲解了线性变换和特征值、特征向量的概念及其重要性。 在讲解了线性代数的基本理论后,课程引入了矩阵分解和特殊矩阵的概念,如LU分解、QR分解和特征值分解等。随后,课程介绍了正交向量、正交矩阵和正交变换的概念及其在几何变换、信号处理等领域的应用。 此外,课程还涉及了线性代数在图论、最小二乘问题、数据压缩等领域的应用。通过实例和案例分析,课程帮助学生将线性代数的理论知识与实际问题相结合,提高解决实际问题的能力。 值得一提的是,该公开课还通过演示和实验的方式,让学生亲自动手进行线性代数的计算和应用,培养了学生的实践能力和创造力。 总的来说,麻省理工学院的线性代数公开课以其详细的内容和完整的知识体系,在教授线性代数知识和培养学生的应用能力方面取得了优异的成绩。无论是对于想要深入学习线性代数的学生,还是对于希望提高问题解决能力的人群,这门公开课都是非常推荐的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值