微积分-几何求导

导数经典的例子

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
ds/dt计算的是一小段时间运动的一小段距离,当dt无限逼近于0,才是我们要求的导数
在这里插入图片描述
dt不能是0 ,无限逼近0,所以导数可以准确的描述为某一点附近最佳直线近似
在这里插入图片描述
如:
在这里插入图片描述
dt无限趋近与0 ,可以忽略
在这里插入图片描述
最后等式简化成:
在这里插入图片描述
在这里插入图片描述
下面体会几何花式求导:

以二次指数函数为例,用几何的方式推理
在这里插入图片描述

x 2 x^2 x2看做是边长为X的正方形的面积,它 的微小变化量我们给它加相同的宽和高,始终保持正方形,则增加的部分如下:

增加的部分等于两个长条的面积加小方块的面积:

d f = 2 x d x + d x 2 df=2xdx+dx^2 df=2xdx+dx2
在这里插入图片描述
当按照微积分的本质将 dx无限逼近0,的时候,试想下长条会变成细细的线,小方块会变成一个点,可以忽略不计,所以等式变成:

df=2xdx
变换下等式:
d f d x = 2 x \frac{df}{dx}\quad=2x dxdf=2x

即两个长条的面积
在这里插入图片描述
比如计算X=5时的导数
在这里插入图片描述

同理三次指数函数用同样的思路推理可得
在这里插入图片描述
当dx趋近于0时,消掉后面的项,相当于只计算单个大的正方形的面积

d f d x = 3 x 2 \frac{df}{dx}\quad=3x^2 dxdf=3x2

应用到更高的指数函数,依然成立

公理化的描述既是:

d ( x n ) d x = n x n − 1 \frac{d(x^n)}{dx}\quad=nx^{n-1} dxd(xn)=nxn1

在这里插入图片描述
再来看倒数函数
在这里插入图片描述
用上面推导的公式就是:

1 x \frac{1}{x}\quad x1可以看作是 x − 1 x^{-1} x1

同样适应于指数函数的倒数公式

f ( x ) = 1 x f(x)=\frac{1}{x}\quad f(x)=x1的导数就是 − 1 x − 2 -1x^{-2} 1x2

在这里插入图片描述
几何花式推导:
在这里插入图片描述
用面积来表示:
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
sin(x)d的导数就是cos(x)

看图像就知道
在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值