积分基本定理的几何推导说明

对于微积分的核心概念,个人感觉有一句话描述的非常到位,"导数是变化的原因,积分是变化的结果"!

书上对微积分基本定理的描述以及证明如下:

设 f(x)在闭区间[a,b]上连续, F(x)f(x)[a,b]上的一个原函数,则:

\int_{a}^{b}f(x)dx=F(b)-F(a)

给出的证明过程是:

 因F(x)

\int_{a}^ {x}f(x)dx

均是f(x)[a,b]上的原函数,只能相差一个常数,即:

\int_{a}^{x}f(t)dt=F(x)+C

x=a

\int_{a}^{a}f(t)dt=F(a)+C=0

所以

C = -F(a)

则:

\int_{a}^{x}f(t)dt=F(x)-F(a)

x=b

\int_{a}^{b}f(t)dt=F(b)-F(a)

得证。

这个证明比较突兀,尤其是

\int_{a}^{x}f(t)dt=F(x)+C,一笔带过,很是气人,究竟为什么函数的积分和它的原函数之间有此种联系呢?并未说明,下面用数形结合的方式尝试说明这个问题。

首先,插入一个只要介绍微积分必会用来做例子的经典题目,求方程

y=x^2

在闭区间[0,1]上的面积。

经典做法是,上图绘制每个区域都选择这个区域的最大速度,这种取法叫做上和,还也可以取下和,就是每个区的最小速度,甚至是中和,都没有关系,根据夹逼定理,无论哪种取法,当n趋进于\infty时都是一样的,

将区间[0,1]平均分成n等份,每一份的长度是1/n,那么面积S等于:

S=\frac{1}{n}*(\frac{1}{n})^2+\frac{1}{n}*(\frac{2}{n})^2+\cdots+\frac{1}{n}*(\frac{n}{n})^2=\frac{1}{n}(\frac{1^2+2^2+\cdots+n^2}{n^2})

这个和有一个专门的名字,叫做黎曼和,它的通用形式是:

\sum_{j=1}^{n}f(c_j)(x_j-x_{j-1})

这里

x_j-x_{j-1}=\frac{1}{n}

其中根据平方和公式:

1^2+2^2+\cdots+n^2=\frac{n(n+1)(2n+1)}{6}

所以

\\ S=\frac{1}{n}*(\frac{1}{n})^2+\frac{1}{n}*(\frac{2}{n})^2+\cdots+\frac{1}{n}*(\frac{n}{n})^2=\frac{1}{n}(\frac{1^2+2^2+\cdots+n^2}{n^2}) = \frac{n(n+1)(2n+1)}{6n^3}\\ \\ \\ \lim_{n->\infty }\frac{n(n+1)(2n+1)}{6n^3}=\lim_{n->\infty }\frac{2n^3}{6n^3}=1/3

这个结果和通过微积分基本定理得到的结果是一致的。

接下来我们用上图一样的原来来证明微积分基本定理:

第一步,联接函数图形上n个分点相邻点,我们可以用这条线段的斜率作为导函数的近似。

设从原点开始的每个线段的为

    l_1 \quad l_2\quad l_3 \quad \cdots \quad \l_n

 则  

 f(l_1) = \frac{F(\frac{1}{n})-F(0)}{\frac{1}{n}}

f(l_2) = \frac{F(\frac{2}{n})-F(\frac{1}{n})}{\frac{1}{n}}

f(l_3) = \frac{F(\frac{3}{n})-F(\frac{2}{n})}{\frac{1}{n}}

             \vdots  \vdots  \vdots  \vdots  \vdots  \vdots

f(l_n) = \frac{F(\frac{n}{n})-F(\frac{n-1}{n})}{\frac{1}{n}}

那么,由于

\int_{0}^{1}f(t)dt

可以表示成函数曲线和坐标轴以及定义域围城的图形的面积,也就是:

\\ \int_{0}^{1}f(t)dt=\lim_{n->\infty }(\frac{1}{n}*f(l_1)+\frac{1}{n}*f(l_2)+\cdots+\frac{1}{n}*f(l_n))=\\ \\\lim_{n->\infty }( \frac{1}{n}(f(l_1)+f(l_2)+\cdots+f(l_n)))=\\ \\ \lim_{n->\infty }(\frac{1}{n}( \frac{F(\frac{1}{n})-F(0)}{\frac{1}{n}} + \frac{F(\frac{2}{n})-F(\frac{1}{n})}{\frac{1}{n}} +\cdots+ \frac{F(\frac{n}{n})-F(\frac{n-1}{n})}{\frac{1}{n}}))=\\ F(\frac{1}{n})-F(0) + F(\frac{2}{n})-F(\frac{1}{n}) + \cdots + F(\frac{n}{n})-F(\frac{n-1}{n}) = \\ F(\frac{n}{n})-F(0)=F(1)-F(0)=1/3-0=1/3

我们也可以进行一下代数推导,如下图所示:

设:

\\G(x)=\int_{a}^{x}{f(t)dt}

\\G'(x)=\frac{d}{dx} \int_{a}^{x}{f(t)dt}=\lim_{h->0}\frac{G(x+h)-G(x)}{h}

其中:

G(x+h)-G(x)

就是上图中阴影部分的面积(包括顶部弯的部分).

当h很小的时候,可以用阴影矩形区域替代.

\\G'(x)=\frac{d}{dx} \int_{a}^{x}{f(t)dt}=\lim_{h->0}\frac{G(x+h)-G(x)}{h}=\frac{hf(x)}{h}=f(x)

所以

G(x)是f(x)的原函数.

得证!

图形化说明:

geogebra说明

求PI

微积分的理解

有一些人认为微积分是错的,理由是推导过程中把不规则的图形分成若干小块,每一块近似成长方形后,都会产生误差,那么累加在一起之后,这些误差也会累积,所以最终肯定不等于原面积。

微积分理论是一套逻辑严谨,高度专业化的学术理论,遵循着专业的研究范式,微积分理论是建立在极限的集论之上的,在现代数学中,使用\varepsilon -\delta语言体系,对极限进行了严谨的定义,然后以此为基础,发展出了整套的微积分体系,这一过程复杂且严格。

在国外的专业教材上,采用的是和国内等价,但是略有不同表述的方式定义定积分的。就是,对于任意划分,以子区间的上确界作黎曼和做为达布上和,以下确界作黎曼和作为达布下和,如果所有达布上和的下确界等于所有达布下和的上确界,那么就称此界限为该函数的定积分。

微积分的定义是很严谨的,在现行体系下,我们可以证明定积分结果和实际是严格相等的。

求导数和求积分像是一把尺子,在丈量着这个世界无处不在的变化。

为什么积分比导数看起来难?

逆运算往往会突破原来的界限,导致跨域,加法的逆运算出现了负数,乘法的逆运算出现了小数,开方出现了无理数,数学上把这种突破界限叫做打破了封闭性。积分是求导的逆运算,也打破了封闭性。一个初等函数求导数还是一个初等函数,但是给一个初等函数求积分,可能是一个超越函数或者不知道是什么的函数,从一个哲学的角度来思考这个问题,求导数是已知全貌,要去判断局部变化性质。而求积分是知道局部,要去窥探全貌,后者就像盲人摸象一样,难以看清全局。这就是积分比导数难的原因。

曲线长度曲线积分

定积分图形化工具desmos

计算定积分的图形化工具desmos:Desmos | 图形计算器

差分机原理

差分机是英国数学家把巴贝奇的天才发明,利用它,可以用机械方法计算多项式。其原理是通过一组多项式系数对函数进行插值制表的方法,这种差分机的具体计算方案也很好理解,一次函数的结果是个等差数列,这个差值就是一阶差;二次函数的结果数列,其一阶差的值是个等差数列,而这个等差数列的差值就是二阶差。也就是说,几次函数就有几阶差,而计算函数的值就只需要将阶差加上去往回推就可以了,整个过程大中只需要用到加减法。

三次函数有三阶差,其三阶差是6,而x^3的三阶导数也是6,似乎有某种相通之处。

差分机的原理如下图所示:

二阶

二阶多项式:


结束 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

papaofdoudou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值