随机事件与概率

随机事件与概率

  • 研究任何一个随机试验,每一个可能的结果被称为随机试验E的样本点或基本事件,记为 ω \omega ω
  • 全体样本点所构成的集合称为样本空间,通常用 Ω \Omega Ω表示, Ω \Omega Ω可以是有限集,也可以是无限集

事件间的关系与运算

设随机试验的样本空间为 Ω \Omega Ω,而A,B, A K ( K = 1 , 2 , . . . ) A_K(K=1,2,...) AK(K=1,2,...) Ω \Omega Ω的子集
1.事件的包含关系
若事件A的发生必然导致事件B的发生,则称事件B包含事件A,记为A ⊂ \subset 或B ⊃ \supset A,此时A是B的子集
例 掷一骰子,设A={掷出6点} B={掷出的点数为偶数}
2.事件相等或等价
当事件B包含事件A且事件A也包含事件B时,称事件A与事件B相等(等价),记为A=B
例 事件C={掷出的点数最大}
3.对立事件
对于事件A,由所有不包含在A中的样本点所组成的事件称为事件A的对立事件或逆事件,记为 A ˉ \bar{A} Aˉ A ˉ \bar{A} Aˉ发生等价于 A A A不发生, A ˉ ˉ \bar{\bar{A}} Aˉˉ= A A A
4.事件的并
"两事件A与B中至少有一件发生"为事件A与B的并,记为 A ∪ B A\cup B AB
5.事件的交
"两事件A与B都发生"为事件A与B的交,记为 A ∩ B A\cap B AB A B AB AB
6.事件的差
即集合的差,记为 A − B A-B AB,表示去掉A中与B相交的部分,故也可表示为A-AB,A-B发生等价于A发生而B不发生
7.事件的互不相容(互斥)
若两事件A与B不可能同时发生,即 A B = ϕ AB=\phi AB=ϕ,这时A与B的并可以表示为A+B

运算律

(1)交换律: A ∪ B = B ∪ A ; A ∩ B = B ∩ A A \cup B=B \cup A;A \cap B=B \cap A AB=BA;AB=BA
(2)结合律: A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C ; A ∩ ( B ∩ C ) = ( A ∩ B ) ∩ C A \cup (B \cup C)=(A \cup B) \cup C;A \cap (B \cap C)=(A \cap B) \cap C A(BC)=(AB)C;A(BC)=(AB)C
(3)分配律: A ∪ ( B ∩ C ) = ( A ∪ B ) ∩ ( A ∪ C ) ; A ∩ ( B ∪ C ) = ( A ∩ B ) ∪ ( A ∩ C ) A \cup (B \cap C)=(A \cup B)\cap(A \cup C);A \cap (B \cup C)=(A \cap B)\cup(A \cap C) A(BC)=(AB)(AC);A(BC)=(AB)(AC)
(4)对偶律: A ∪ B ‾ = A ‾ ∩ B ‾ ; A ∩ B ‾ = A ‾ ∪ B ‾ \overline{A \cup B}=\overline{A}\cap \overline{B};\overline{A \cap B}=\overline{A} \cup \overline{B} AB=AB;AB=AB
推广为n个事件 ∪ i = 1 n A i ‾ = ∩ i = 1 n A i ‾ , ∩ i = 1 n ‾ = ∪ i = 1 n A i ‾ \overline{\cup_{i=1}^{n}A_i}=\cap_{i=1}^{n}\overline{A_i},\overline{\cap_{i=1}^{n}}=\cup_{i=1}^n\overline{A_i} i=1nAi=i=1nAi,i=1n=i=1nAi

概率

  • 设E是随机试验, Ω \Omega Ω是它的样本空间,对于E的每一事件A赋予一个实数,记为P(A),成为事件A的概率,如果集合函数 P ( ⋅ ) P(\cdot) P()满足以下条件:
    (1)非负性:对于每一个事件A,有 P ( A ) ≥ 0 P(A)\ge0 P(A)0;
    (2)规范性:对于必然事件 Ω \Omega Ω,有 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1;
    (3)可列可加性:设 A 1 , A 2 , … A_1,A_2,\ldots A1,A2,是两两互不相容的事件,即对于 A i A j = ϕ , i ≠ j , i , j = 1 , 2 , … , A_iA_j=\phi,i \neq j,i,j=1,2,\ldots, AiAj=ϕ,i=j,i,j=1,2,,有: P ( A 1 ∪ A 2 ∪ … ) = P ( A 1 ) + P ( A 2 ) + … P(A_1 \cup A_2 \cup \ldots)=P(A_1)+P(A_2)+\ldots P(A1A2)=P(A1)+P(A2)+
定理:
定理1:不可能事件 ϕ \phi ϕ的概率为0, P ( ϕ ) = 0 P(\phi)=0 P(ϕ)=0
证:由于可列个不可能事件之并仍是不可能事件,所以
Ω = Ω ∪ ϕ ∪ ϕ ∪ ϕ ∪ ⋯ ∪ ϕ ∪ … \Omega = \Omega \cup \phi \cup \phi \cup \phi \cup \dots \cup \phi \cup \dots Ω=Ωϕϕϕϕ,因为不可能事件与任何事件是互不相容的,故由可加性公理得
P ( Ω ) = P ( Ω ) + P ( ϕ ) + ⋯ + P ( ϕ ) + … P(\Omega)=P(\Omega)+P(\phi)+\dots+P(\phi)+\dots P(Ω)=P(Ω)+P(ϕ)++P(ϕ)+从而由 P ( Ω ) = 1 P(\Omega)=1 P(Ω)=1
P ( ϕ ) + P ( ϕ ) + ⋯ = 0 P(\phi)+P(\phi)+\dots=0 P(ϕ)+P(ϕ)+=0再由非负性公理,必有 P ( ϕ ) = 0 P(\phi)=0 P(ϕ)=0
定理2:有限可加性:若 A 1 , A 2 , … , A n A_1,A_2,\dots,A_n A1,A2,,An是两两互不相容的事件,则有 P ( A 1 ∪ A 2 ∪ … A n ) = P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A n ) P(A_1 \cup A_2 \cup \dots A_n)=P(A_1)+P(A_2)+\dots+P(A_n) P(A1A2An)=P(A1)+P(A2)++P(An),此式称为概率的有限可加性
证:令 A n + 1 = A n + 2 = ⋯ = ϕ A_{n+1}=A_{n+2}=\dots =\phi An+1=An+2==ϕ,即有 A i A j = ϕ , i ≠ j , i , j = 1 , 2 , … A_iA_j=\phi,i \neq j,i,j=1,2,\dots AiAj=ϕ,i=j,i,j=1,2,,由定理1得:
P ( A 1 ∪ A 2 ∪ ⋯ ∪ A n ) = P ( ∪ k = 1 ∞ A k ) = ∑ k = 1 ∞ P ( A k ) = ∑ k = 1 n P ( A k ) + 0 = P ( A 1 ) + P ( A 2 ) + ⋯ + P ( A n ) P(A_1 \cup A_2 \cup \dots \cup A_n)=P(\cup_{k=1}^\infty A_k)=\sum_{k=1}^\infty P(A_k)=\sum_{k=1}^nP(A_k)+0=P(A_1)+P(A_2)+\dots+P(A_n) P(A1A2An)=P(k=1Ak)=k=1P(Ak)=k=1nP(Ak)+0=P(A1)+P(A2)++P(An)
定理3:设A,B是两个事件,若 A ⊂ B A \subset B AB,则有 P ( B − A ) = P ( B ) − P ( A ) ; P ( B ) ≥ P ( A ) P(B-A)=P(B)-P(A);P(B) \ge P(A) P(BA)=P(B)P(A);P(B)P(A)
证:由 A ⊂ B A \subset B AB B = A ∪ ( B − A ) B=A \cup (B-A) B=A(BA) ,且 A ( B − 1 ) = ϕ A(B-1)=\phi A(B1)=ϕ则由概率的有限可加性有: P ( B ) = P ( A ) + P ( A − B ) P(B)=P(A)+P(A-B) P(B)=P(A)+P(AB)再由概率的非负性, P ( B − 1 ) ≥ 0 P(B-1) \ge 0 P(B1)0得: P ( B ) ≥ P ( A ) P(B) \ge P(A) P(B)P(A)
定理4:对于任一事件A, P ( A ) ≤ 1 P(A) \le 1 P(A)1
证:因 A ⊂ Ω A \subset \Omega AΩ,由定理3知: P ( A ) ≤ P ( Ω ) P(A) \le P(\Omega) P(A)P(Ω)
定理5:逆事件的概率:对于任一事件A,有 P ( A ˉ ) = 1 − P ( A ) P(\bar A)=1-P(A) P(Aˉ)=1P(A)
证:因 A ∪ A ˉ = Ω A \cup \bar{A}=\Omega AAˉ=Ω,且 A A ˉ = ϕ A\bar{A}=\phi AAˉ=ϕ,得: 1 = P ( Ω ) = P ( A ∪ A ˉ ) = P ( A ) + P ( A ˉ ) 1=P(\Omega)=P(A \cup \bar{A})=P(A) + P(\bar{A}) 1=P(Ω)=P(AAˉ)=P(A)+P(Aˉ)
定理6:加法公式:对于任意两事件A,B有 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
证:因 A ∪ B = A ∪ ( B − A B ) A \cup B=A \cup (B-AB) AB=A(BAB) A ( B − A B ) = ϕ ; A B ⊂ B A(B-AB)=\phi;AB \subset B A(BAB)=ϕ;ABB故由定理2及定理3得: P ( A ∪ B ) = P ( A ) + P ( B − A B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B)=P(A)+P(B-AB)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(BAB)=P(A)+P(B)P(AB)
将上式推广到多个事件,例如三个事件,则有: P ( A 1 ∪ A 2 ∪ A 3 ) = P ( A 1 ) + P ( A 2 ) + P ( A 3 ) − P ( A 1 A 2 ) − P ( A 2 A 3 ) − P ( A 1 A 3 ) + P ( A 1 A 2 A 3 ) P(A_1 \cup A_2 \cup A_3)=P(A_1)+P(A_2)+P(A_3)-P(A_1A_2)-P(A_2A_3)-P(A_1A_3)+P(A_1A_2A_3) P(A1A2A3)=P(A1)+P(A2)+P(A3)P(A1A2)P(A2A3)P(A1A3)+P(A1A2A3)
一般,对于任意n个事件 A 1 , A 2 , … , A n A_1,A_2,\dots, A_n A1,A2,,An可以用归纳为: P ( A 1 ∪ A 2 ⋯ ∪ A n ) = ∑ i = 1 n P ( A i ) − ∑ 1 ≤ i < j ≤ n P ( A i A j ) + ∑ 1 ≤ i < j ≤ n P ( A i A j A k ) + ⋯ + ( − 1 ) n − 1 P ( A 1 A 2 … A n ) P(A_1 \cup A_2 \dots \cup A_n)=\sum_{i=1}^{n}P(A_i)-\sum_{1 \le i<j \le n}P(A_iA_j)+\sum_{1 \le i<j \le n}P(A_iA_jA_k)+ \dots +(-1)^{n-1}P(A_1A_2 \dots A_n) P(A1A2An)=i=1nP(Ai)1i<jnP(AiAj)+1i<jnP(AiAjAk)++(1)n1P(A1A2An)

古典概型

  • 设试验E的样本空间有有限多个样本点,即 Ω = { ω 1 , ω 2 , … , ω n } \Omega=\lbrace \omega_1,\omega_2,\ldots,\omega_n \rbrace Ω={ω1,ω2,,ωn},且每个样本点出现的可能性相同,此试验即被成为古典概型

几何概型

  • 若样本空间 Ω \Omega Ω可以构成n维空间中的一个有限区域G,而事件 A ⊂ Ω A\subset \Omega AΩ构成了G中某一部分区域g则称 P ( A ) = g 的 测 度 G 的 测 度 P(A)=\frac{g的测度}{G的测度} P(A)=Gg为事件A的几何概率,当 A = ϕ A=\phi A=ϕ时,规定 P ( A ) = 0 P(A)=0 P(A)=0
会面问题
甲、乙两人约定某日下午两点至下午两点半在某地会面,先到者等候15分钟后即离去,假设每人可在指定时间内任一时刻到达,试求两人能会面的概率
解:记下午两点为会面的起点时刻0,设x,y分别为甲、乙两人到达的时刻,A表示两人能会面,则A发生的充要条件是 ∣ x − y ∣ ≤ 15 |x-y| \le 15 xy15这个问题可归结为几何概型:向平面区域 Ω = { ( x , y ) ∣ 0 ≤ x , y ≤ 30 } \Omega=\lbrace (x,y)|0 \le x,y \le 30 \rbrace Ω={(x,y)0x,y30}内随机投点,事件A即点投入 Ω \Omega Ω中的区域 A = { ( x , y ) ∣ ∣ x − y ∣ ≤ 15 } A=\lbrace (x,y)| |x-y| \le 15 \rbrace A={(x,y)xy15}中,于是
P ( A ) = A 的 面 积 Ω 的 面 积 = 3 0 2 − 1 5 2 3 0 2 = 3 4 P(A)=\frac{A的面积}{\Omega的面积}=\frac{30^2-15^2}{30^2}=\frac{3}{4} P(A)=ΩA=302302152=43

条件概率

  • 设A,B是事件,P(A)>0,已知事件A发生的条件下,事件B发生的概率,称为条件概率
    条件概率公式:如果P(A)>0,则 P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)

全概率公式

定理7:设A与B是任意两个事件,假如 0 < P ( B ) < 1 0<P(B)<1 0<P(B)<1,则 P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ˉ ) P ( B ˉ ) P(A)=P(A|B)P(B)+P(A|\bar{B})P(\bar{B}) P(A)=P(AB)P(B)+P(ABˉ)P(Bˉ)
证:由 B ∪ B ˉ = Ω B \cup \bar{B}=\Omega BBˉ=Ω和事件运算性质有:
A = A Ω = A ( B ∪ B ˉ ) = A B ∪ A B ˉ A=A\Omega=A(B \cup \bar{B})=AB \cup A\bar{B} A=AΩ=A(BBˉ)=ABABˉ,显然 A B AB AB A B ˉ A\bar{B} ABˉ是互不相容事件,由加法和乘法公式得:
P ( A ) = P ( A B ) + P ( A B ˉ ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ˉ ) P ( B ˉ ) P(A)=P(AB)+P(A\bar{B})=P(A|B)P(B)+P(A|\bar{B})P(\bar{B}) P(A)=P(AB)+P(ABˉ)=P(AB)P(B)+P(ABˉ)P(Bˉ)由于 P ( B ) P(B) P(B)不为0和1,所以 P ( B ˉ ) > 0 P(\bar{B})>0 P(Bˉ)>0从而上述两个条件概率 P ( A ∣ B ) P(A|B) P(AB) P ( A ∣ B ˉ ) P(A|\bar{B}) P(ABˉ)都是有意义的
  • 把样本空间 Ω \Omega Ω分为n个事件 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn
    (1) P ( B i ) > 0 , i = 1 , 2 , … , n P(B_i)>0,i=1,2,\dots,n P(Bi)>0,i=1,2,,n
    (2) B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn互不相容
    (3) ∪ i = 1 n B i = Ω \cup_{i=1}^nB_i=\Omega i=1nBi=Ω则称事件组 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn为样本空间 Ω \Omega Ω的一个分割
定理8:(全概率公式)设 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn是样本空间 Ω \Omega Ω的一个分割,则对 Ω \Omega Ω中任一事件A,有 P ( A ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^{n}P(A|B_i)P(B_i) P(A)=i=1nP(ABi)P(Bi)
证:由事件运算知: A = A Ω = A ( ∪ i = 1 n B i ) = ∪ i = 1 n A B i A=A\Omega=A(\cup_{i=1}^{n}B_i)=\cup_{i=1}^{n}AB_i A=AΩ=A(i=1nBi)=i=1nABi
B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,,Bn互不相容可知 A B 1 , A B 2 , … , A B n AB_1,AB_2,\dots,AB_n AB1,AB2,,ABn也互不相容,再由可加性和乘法公式得:
P ( A ) = ∑ i = 1 n P ( A B i ) = ∑ i = 1 n P ( A ∣ B i ) P ( B i ) P(A)=\sum_{i=1}^{n}P(AB_i)=\sum_{i=1}^{n}P(A|B_i)P(B_i) P(A)=i=1nP(ABi)=i=1nP(ABi)P(Bi)
例:某工厂有三台机器生产同一种产品,三台机器的产量分别占总产量的25%,35%,40%,次品率分别为0.05,0.04,0.02,若全部产品放在一起,求这种产品的次品率
解:设A={任取一件产品是次品},则次品率即是P(A),设 B i B_i Bi={产品是第i台机器生产的},i=1,2,3
由题设知 P ( B 1 ) = 0.25 , P ( B 2 ) = 0.35 , P ( B 3 ) = 0.4 P(B_1)=0.25,P(B_2)=0.35,P(B_3)=0.4 P(B1)=0.25,P(B2)=0.35,P(B3)=0.4,则 B 1 , B 2 , B 3 B_1,B_2,B_3 B1,B2,B3 Ω \Omega Ω的一个分割,且 P ( A ∣ B 1 ) = 0.05 , P ( A ∣ B 2 ) = 0.04 , P ( A ∣ B 3 ) = 0.02 P(A|B_1)=0.05,P(A|B_2)=0.04,P(A|B_3)=0.02 P(AB1)=0.05,P(AB2)=0.04,P(AB3)=0.02,则 P ( A ) = P ( B 1 ) P ( A ∣ B 1 ) + P ( B 2 ) P ( A ∣ B 2 ) + P ( B 3 ) P ( A ∣ B 3 ) = 0.25 × 0.05 + 0.35 × 0.04 + 0.4 × 0.02 = 0.0345 P(A)=P(B_1)P(A|B_1)+P(B_2)P(A|B_2)+P(B_3)P(A|B_3)=0.25 \times 0.05+0.35 \times 0.04+0.4 \times 0.02=0.0345 P(A)=P(B1)P(AB1)+P(B2)P(AB2)+P(B3)P(AB3)=0.25×0.05+0.35×0.04+0.4×0.02=0.0345

贝叶斯公式

若事件B能且只能与两两互不相容的事件 A 1 , A 2 , … , A n , … A_1,A_2,\dots,A_n,\dots A1,A2,,An,之一同时发生,即 B = ∑ i = 1 ∞ B A i B=\sum_{i=1}^{\infty}BA_i B=i=1BAi,由于 P ( A i B ) = P ( A i ∣ B ) P ( B ) = P ( A i ) P ( B ∣ A i ) P(A_iB)=P(A_i|B)P(B)=P(A_i)P(B|A_i) P(AiB)=P(AiB)P(B)=P(Ai)P(BAi),故 P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) P ( B ) P(A_i|B)=\frac{P(A_i)P(B|A_i)}{P(B)} P(AiB)=P(B)P(Ai)P(BAi),再由全概率公式得: P ( A i ∣ B ) = P ( A i ) P ( B ∣ A i ) ∑ i = 1 ∞ P ( A i ) P ( B ∣ A i ) P(A_i|B)=\frac{P(A_i)P(B|A_i)}{\sum_{i=1}^{\infty}P(A_i)P(B|A_i)} P(AiB)=i=1P(Ai)P(BAi)P(Ai)P(BAi)
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盛者无名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值