基于多核学习的多视图学习——半正定规划(Semi-Definite Programming, SDP)

半正定规划(Semi-Definite Programming, SDP)是一类凸优化问题,它的目标函数和约束条件都是半正定矩阵的线性函数

SDP问题通常出现在信号处理、控制理论、组合优化、量子计算等多个领域,因为它们能够处理一些其他类型优化问题无法直接处理的复杂约束。

SDP的标准形式

一个SDP问题可以被表述为:

min ⁡   ⟨ C , X ⟩ s.t.  ⟨ A i , X ⟩ = b i , i = 1 , … , m X ⪰ 0 , \begin{align*} \min\ & \langle C, X \rangle \\ \text{s.t.}\ & \langle A_i, X \rangle = b_i, \quad i = 1,\ldots,m \\ & X \succeq 0, \end{align*} min s.t. C,XAi,X=bi,i=1,,mX0,

这里的符号意义如下:

  • C ∈ S n C \in S^n CSn :是一个固定的半正定矩阵,表示目标函数中的成本矩阵。
  • X ∈ S n X \in S^n XSn :是决策变量,即我们试图找到的半正定矩阵。
  • A i ∈ S n A_i \in S^n AiSn :是第 i i i线性约束的矩阵,其中 i = 1 , … , m i = 1,\ldots,m i=1,,m
  • b i b_i bi :是第 i i i线性约束的标量,其中 i = 1 , … , m i = 1,\ldots,m i=1,,m
  • S n S^n Sn :表示所有 n × n n \times n n×n 实对称矩阵的集合。
  • ⟨ ⋅ , ⋅ ⟩ \langle \cdot, \cdot \rangle , :表示矩阵的Frobenius内积,即 ⟨ A , B ⟩ = ∑ i = 1 n ∑ j = 1 n A i j B i j \langle A, B \rangle = \sum_{i=1}^n \sum_{j=1}^n A_{ij}B_{ij} A,B=i=1nj=1nAijBij
  • X ⪰ 0 X \succeq 0 X0 :表示 X X X半正定的,这意味着对于所有的非零向量 v v v ,有 v T X v ≥ 0 v^T X v \geq 0 vTXv0

解释:

  • 目标函数 min ⁡   ⟨ C , X ⟩ \min\ \langle C, X \rangle min C,X 意味着我们要最小化矩阵 C C C 和决策矩阵 X X X 之间的Frobenius内积。这个内积实际上是矩阵 C C C X X X 元素的乘积之和。

  • 线性约束 ⟨ A i , X ⟩ = b i \langle A_i, X \rangle = b_i Ai,X=bi 表示对于每一个 i i i ,矩阵 A i A_i Ai 和决策矩阵 X X X 之间的内积必须等于给定的标量 b i b_i bi 。这些是线性约束,因为它们涉及矩阵的线性组合。

  • 半正定约束 X ⪰ 0 X \succeq 0 X0 确保了决策矩阵 X X X半正定的。这是SDP的关键特性,也是它名字的来源。

SDP的特点:

  1. 凸性:SDP问题是凸优化问题的一种,这意味着如果存在解,那么找到的解将是全局最优解。

  2. 高效求解:现代算法,如内点法,可以有效地解决大规模的SDP问题。

  3. 应用广泛:SDP问题可以用来放松或近似一些NP-hard的组合优化问题,比如图着色、最大割等问题。

示例:

假设我们有一个SDP问题,其中目标函数是通过矩阵 C C C 和决策矩阵 X X X 的Frobenius内积给出的,而约束条件则是通过一系列矩阵 A i A_i Ai 和对应的标量 b i b_i bi 给出的。

我们的目标是找到一个半正定矩阵 X X X ,它最小化目标函数的同时满足所有线性约束。

在SDP问题中,矩阵的大小 n n n 和约束的数量 m m m 可以很大,但这并不妨碍我们使用适当的算法找到解决方案。

例如,如果我们有3个约束,我们就可以写出相应的SDP问题:

min ⁡   ⟨ ( 1 0 0 1 ) , X ⟩ s.t.  ⟨ ( 1 0 0 0 ) , X ⟩ = 1 ⟨ ( 0 1 1 0 ) , X ⟩ = 0 ⟨ ( 0 0 0 1 ) , X ⟩ = 1 X ⪰ 0. \begin{align*} \min\ & \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, X \rangle \\ \text{s.t.}\ & \langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, X \rangle = 1 \\ & \langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, X \rangle = 0 \\ & \langle \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, X \rangle = 1 \\ & X \succeq 0. \end{align*} min s.t. (1001),X(1000),X=1(0110),X=0(0001),X=1X0.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值