GPT-4o vs GPT-4:免费的比收费的更强?不科学啊!OpenAI旗舰模型全面评测

在近期的AI模型排行榜上,GPT-4o一跃成为了第一。然而,许多人对这一现象持怀疑态度,认为免费的GPT-4o居然比收费的GPT-4 Turbo更强,实在是不科学。为了验证这一点,我决定进行一次全面的测试,比较两者在不同任务中的表现。

测试项目

这次测试涵盖了以下几个方面:

  1. 编程和代码编写
  2. PDF长文档的阅读和数据提取
  3. 文本生成
  4. 推理和数学问题
编程和代码编写

首先,我让两者编写一个俄罗斯方块的游戏。GPT-4o编写代码的速度非常快,并且代码运行顺利,仅需对窗口尺寸做一些小调整。而GPT-4虽然也能编写代码,但运行时遇到了一些错误,需要多次调整才能正常运行。结论是,GPT-4o在编程和代码编写上表现更为出色。

PDF长文档的阅读和数据提取

接下来,我测试了它们从特斯拉2023年年报中提取收入数据并整理成电子表格的能力。GPT-4o经过几次尝试后成功提取并生成了Excel表格,而GPT-4也能正确提取数据并生成CSV文件。总体来看,两者在这方面表现旗鼓相当,但GPT-4o在数据分析功能上占有优势。

文本生成

在文本生成方面,我进行了多项测试,包括上网查信息、裁判评判、识别图片情绪、生成诗词等。GPT-4o在生成代码和对图片人物情绪的描述上表现更好,而在上网查信息和评判事件上,GPT-4表现得更为简洁和流畅。

推理和数学问题

最后,我测试了它们解决经典的烧绳子问题的能力。在45分钟计时问题上,两者都能正确回答。但在进阶的75分钟计时问题上,GPT-4o在提示下最终给出了正确答案,而GPT-4则陷入了混乱。经过多轮提示后,GPT-4o再次胜出。

总结

通过这次测试,我们可以得出以下结论:

  • 编程和代码编写:GPT-4o 完胜
  • PDF长文档数据提取:二者旗鼓相当,但GPT-4o在数据分析功能上有优势
  • 文本生成:GPT-4o 在描述图片情绪和生成诗词上更胜一筹,GPT-4在上网查信息和事件评判上略胜
  • 推理和数学问题:GPT-4o 胜出

综上所述,GPT-4o在大部分情况下表现更为出色,能够满足许多人的需求。然而,在需要多轮沟通和深入讨论的问题上,GPT-4依然是一个不错的选择。
在这里插入图片描述

### 国内外主流AI大模型列表 以下是国内外一些主流的AI大模型及其特点: #### 国内主流AI大模型 1. **豆包 Doubao-1.5-pro** 豆包在2023年1月22日正式发布了全新的基础模型Doubao-1.5-pro。这一版本的能力得到了全面提升,特别是在多模态处理方面表现出色[^1]。 2. **阿里云通义千问 Qwen2.5-Max** 阿里云于2023年1月29日推出了旗舰模型Qwen2.5-Max。这款模型经过全新升级,预训练数据量超过了20万亿tokens,并在多个公开评测基准中取得了优异成绩。 3. **Kimi k1.5 多模态思考模型** Kimi在2023年1月20日发布的k1.5多模态思考模型,在short-CoT模式下的表现尤为突出。它仅在数学、代码视觉多模态能力上超越了GPT-4oClaude 3.5 Sonnet等国际顶级模型,还实现了高达550%的性能提升[^3]。 #### 国外主流AI大模型 1. **OpenAI GPT系列** OpenAI推出的GPT系列一直是自然语言处理领域的标杆。最新的GPT-4o版本在各种复杂任务上的表现依旧卓越,尤其是在长思考(Long-CoT)模式下展现了大的推理能力[^3]。 2. **Anthropic Claude系列** Anthropic公司的Claude系列同样备受关注。其中Claude 3.5 Sonnet作为一款先进的多模态模型,在许多应用场景中提供了高质量的服务[^3]。 3. **Google Gemini Pro** Google近期发布的Gemini Pro也是一款极具竞争力的大规模多模态模型。它的设计旨在解决复杂的现实世界问题,具备高度灵活性适应性[^4]。 --- ### 技术支持与开发工具 除了了解这些具体的模型之外,基于大模型的企业级应用开发也是当前的重要方向之一。通过掌握GPU算力管理、硬件优化以及像LangChain这样的开发框架,开发者可以高效地完成从数据准备到最终部署的一整套流程[^2]。 此外,为了好地理解运用上述提到的各种大模型,推荐参考一系列权威书籍技术文档资源。这些材料能够帮助读者构建扎实的理论基础,从而推动实际项目的顺利开展[^4]。 ```python # 示例:如何加载预训练模型(以Hugging Face Transformers库为例) from transformers import AutoModel, AutoTokenizer model_name = "qwen/Qwen2.5-Max" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) text_input = tokenizer("你好,这是一个测试输入!", return_tensors="pt") output = model(**text_input) print(output) ``` 相关问题
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值