近期有幸拿到了Google最新发布的《Prompt Engineering》白皮书,这是一份由Lee Boonstra主笔,Michael Sherman、Yuan Cao、Erick Armbrust、Antonio Gulli等多位专家共同贡献的权威性指南,发布于2025年2月。今天我想和大家分享这份68页的宝贵资源,它详细介绍了如何为大型语言模型(LLM)设计有效的提示词。
白皮书概述
这份白皮书从基础概念到高级策略,全面覆盖了各种提示工程技术,并配有实用示例和清晰解释。无论你是初学者还是有经验的AI从业者,都能从中获益匪浅。
主要内容
基础知识
- 提示工程的定义与重要性
- LLM输出配置:输出长度、采样控制、温度、Top-K和Top-P参数等
提示技术
- 零样本提示(Zero-shot prompting)
- 少样本提示(One-shot & Few-shot prompting)
- 系统提示(System prompting)
- 角色提示(Role prompting)
- 上下文提示(Contextual prompting)
- 后退提示(Step-back prompting)
- 思维链(Chain of Thought)
- 自我一致性(Self-consistency)
- 思维树(Tree of Thoughts)
- 推理与行动(ReAct)
- 自动提示工程(Automatic Prompt Engineering)
代码提示技巧
- 编写代码的提示
- 解释代码的提示
- 翻译代码的提示
- 调试和审查代码的提示
最佳实践
- 提供示例
- 设计简洁明了的提示
- 关于输出的具体说明
- 使用指令而非约束
- 控制最大令牌长度
- 在提示中使用变量
- 实验不同的输入格式和写作风格
- 记录各种提示尝试
实用指南
白皮书中包含大量实用表格和示例,展示了如何构建有效的提示,以及如何根据特定任务优化提示参数。例如,温度设置应根据任务性质调整:创意任务可采用较高温度(如0.9),而精确任务(如数学问题)则建议使用较低温度(如0)。
资源下载
考虑到这份资源的价值,我已将完整PDF上传,大家可以下载。强烈建议所有对AI提示工程感兴趣的朋友仔细阅读,这将极大提升你与AI模型互动的效率和效果。
总结
随着生成式AI的普及,掌握提示工程技术变得越来越重要。这份Google白皮书提供了系统、全面的指导,帮助我们更好地利用大语言模型的潜力。无论是开发AI应用还是日常使用AI工具,这些知识都将极大提升你的体验和成果。