Stable Diffusion WebUI训练Lora测试XYZ显示例图

这篇博客介绍了如何通过Stable Diffusion WebUI的两种方式来训练Lora模型并生成图像。在方式一中,用户需要选择模型,设置X轴和Y轴的参数,然后在prompt中输入Lora格式。在方式二中,选择模型的步骤略有不同,但同样涉及X轴和Y轴的设置,以及Lora格式的输入。最后,点击生成按钮以完成图像的创建。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

方式一

1.1 选择模型放入目录

将模型放入sd项目的models\Lora\目录,尽量保持和其他模型分开。

sd中显示如下:

1.2 脚本X/Y/Zplot选择

X轴类型:提示词搜索/替换

X轴值:NUM,000001,000002, 000003, 000004, 000005, 000006, 000007, 000008, 000009, 000010

Y轴类型:提示词搜索/替换

Y轴值:STRENGTH, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

1.3 prompt中填入Lora格式:

### 使用 Stable Diffusion WebUI 进行模型训练 #### 安装环境准备 为了使用 Stable Diffusion WebUI训练自定义模型,首先需要准备好运行环境。推荐在 Linux 系统上操作,因为其命令行工具更强大且易于配置[^1]。 对于 Windows 用户而言,虽然可以直接采用 B 站 @秋葉aaaki 提供的启动器简化安装流程,但在灵活性方面不如 Linux 平台。因此,在此仅讨论 Linux 上的具体步骤。 #### 获取最新版本WebUI 前往 GitHub 或官方指定页面下载最新的 Stable Diffusion WebUI 版本并解压到目标文件夹内。确保该位置有足够的磁盘空间来存储数据集以及后续产生的大量中间文件和最终输出的结果。 ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui/ ``` #### 准备训练所需资源 收集用于训练的数据集,并将其整理成适合喂给算法的形式——通常是一系列标记过的像样本集合。同时也要获取预训练的基础权重文件作为起点,这有助于加速收敛过程并提高生成质量。 #### 启动 WebUI 接口服务 执行如下指令开启形化界面的服务端: ```bash ./webui.sh ``` 此时应该能够在浏览器中打开 `http://localhost:7860` 地址看到应用程序首页了[^2]。 #### 配置训练参数选项 进入“Train”标签页调整各项超参设定,比如批次大小(batch size)、学习率(learning rate)等关键因素都会影响到最后的效果好坏。这里还可以选择不同的优化策略(optimizer),如 AdamW, SGD 等。 另外值得注意的是,如果打算做特定领域内的迁移学习,则可能还需要额外加载对应的类别映射表(class mapping table)以便更好地适配新任务需求。 #### 开始训练进程 确认无误之后点击按钮提交作业即可让机器自动完成整个迭代更新周期直至满足停止条件为止。期间可以通过实时监控表观察损失函数变化趋势从而判断当前状态是否正常稳定发展下去。 #### 导出成果物 当达到预期性能指标后就可以终止计算并将得到的新版网络结构保存下来以备将来重复利用或者分享出去让更多人受益于这项工作成果之上。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星辰同学wwq

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值