Power BI部署——本地and云端

61 篇文章 ¥19.90 ¥99.00
本文介绍了Power BI的部署方法,包括云端和本地版本。云端部署需要Power BI Pro许可证,用户需拥有相同账号类型以共享内容。本地部署则需要SQL Server企业版和AD认证(若在域内)。详细步骤及权限设置链接已提供。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、云端Power BI部署:要进行共享,需要Power BI Pro许可证,查看共享的用户也需要是Power BI Pro账号

参考:https://docs.microsoft.com/zh-cn/power-bi/service-share-dashboards

按权限查看报表:http://www.360doc.com/content/18/0725/04/19639053_773006270.shtml

2、本地版Power BI部署,搭建报表服务器,首先需要企业版SQL Server数据库

2.1、若服务器在域内,需要做AD认证(单独在一台服务器上),然后开通域账号,将域账号加入到Power BI Report Server中即可用域账号登陆(若AD域由Global管控,域账号由Global来开,将域账号加入PBI Report Server由地方IT操作即可)
2.2、若服务器不在域内,直接本地账号登陆

本地部署的话需要用SQL Server Enterprise的licence,本地的Power BI Report Server的licence是跟SQL Server的licence绑定在一起

### PowerBI 数据处理与可视化方法 #### 数据获取 在 Power BI 中,数据获取是一个重要的初始阶段。用户可以通过“数据选项卡”的“获取数据”功能来导入各种类型的源数据[^4]。支持的数据源种类繁多,包括但不限于 Excel 工作簿、CSV 文件、数据库以及云服务等。 #### 数据处理 一旦数据被成功加载到 Power BI Desktop 中,“Power Query 编辑器”将成为主要工具来进行数据清理和转换。在这个过程中,可以执行诸如列拆分、数据类型调整、删除冗余字段等一系列操作。完成这些步骤之后,可以选择“关闭并上载”或者“关闭并上载至”,后者允许将数据直接加入到数据模型中以便进一步分析。 #### 建模 对于复杂的数据集来说,建立适当的关系模型至关重要。这一步骤涉及定义表格之间的关系,从而使得跨多个表的查询成为可能。合理的建模有助于提高后续报告生成效率,并确保计算准确性。 #### 报表构建 报表的设计应考虑目标受众的需求。通过拖拽相应的图表控件到画布区域即可快速搭建基本布局。值得注意的是,在追求功能性的同时也不可忽视美观性;合理运用主题样式、配色方案及字体大小可以使最终成果更具吸引力[^3]。 #### 发布与共享 完成后的工作簿可通过 Power BI Service 进行云端部署,这样不仅方便团队成员之间协作访问,还能实现更广泛的外部分享[^1]。此外,移动设备端的支持让随时随地查看最新动态变得轻而易举。 ```python import pandas as pd # 示例代码展示如何读取Excel文件中的数据 data = pd.read_excel('example.xlsx') # 对数据进行初步探索 print(data.head()) ``` 以上便是基于所提供的参考资料所总结出来的关于 Microsoft Power BI 的整个工作流概述——从最初的数据收集到最后的结果呈现都涵盖了具体的操作指南和技术要点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BI-段二胖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值