用赤池信息量准则(AIC)选择最佳模型:小学生也能懂的指南

​​​​​​在这里插入图片描述

让我们用简单的语言来解释一下赤池信息量准则(Akaike Information Criterion,简称AIC),并包含必要的公式。

什么是AIC?

AIC是一种衡量统计模型相对质量的指标。它帮助我们选择一个模型,这个模型在尽可能准确地拟合数据的同时,保持简洁性。AIC考虑了模型的拟合度(即模型对数据的解释能力)和模型的复杂度(即模型中参数的数量)。

AIC的公式

AIC的公式如下:

[ A I C = 1 n σ ^ 2 ( R S S + 2 d σ ^ 2 ) ] [AIC = \frac{1}{n \hat{\sigma}^2} (RSS + 2d \hat{\sigma}^2)] [AIC=nσ^21(RSS+2dσ^2)]
其中:

  • ( RSS ) 是残差平方和(Residual Sum of Squares),即所有数据点与模型预测值之间差的平方和。

  • ( n ) 是观测值的数量。

  • ( d ) 是模型中参数的数量(包括截距)。

  • ( σ ^ 2 ) ( \hat{\sigma}^2 ) (σ^2)

    是样本方差,它是残差平方和除以自由度(( n - d ))的估计值。

简单解释

想象一下,你在用积木搭建一个桥梁模型。AIC就像是在评价你的桥梁模型时,考虑了你用了多少积木以及模型与真实桥梁的相似度。如果用了很多积木但模型并没有变得更好,AIC就会变高,告诉你这个模型可能不是最好的。

为什么使用AIC?

在构建模型时,我们希望模型既准确又简洁。AIC帮助我们理解,增加更多的参数是否真的提高了模型的预测能力,还是只是让模型变得复杂而没有实际的好处。这样,我们就可以构建一个既有效又不会过度复杂的模型。

AIC的计算步骤

  1. 计算残差平方和(RSS):这是模型预测值与实际观测值之间差异的平方和。
  2. 估计样本方差 ( σ ^ 2 ) ( \hat{\sigma}^2 ) (σ^2):这通常是RSS除以自由度(( n - d ))。
  3. 计算AIC:将RSS和参数数量(( d ))代入公式。

举个例子

假设我们有一个模型,它使用房子的大小、房间数量和位置来预测房子的价格。这里,我们有3个自变量加上一个截距,所以 ( d = 4 )。如果我们有100个房子的数据点,那么 ( n = 100 )。我们计算出RSS和
( σ ^ 2 ) ( \hat{\sigma}^2 ) (σ^2)
,然后代入AIC公式,得到AIC的值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

从零开始学习人工智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值