2020-11-03 生成两个服从高斯分布的数据集并用XGBoost模型进行预测

本文介绍了如何生成两个服从高斯分布的数据集,并应用XGBoost机器学习模型进行预测分析的过程。
摘要由CSDN通过智能技术生成
# -*- coding=utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
import xgboost as xgb


# train data
def get_train_data(data_size=100):
    data_label = np.zeros((2*data_size, 1))
    # class 1
    x1 = np.reshape(np.random.normal(3, 1, data_size), (data_size, 1))
    y1 = np.reshape(np.random.normal(4, 1, data_size), (data_size, 1))
    data_train = np.concatenate((x1, y1), axis=1)
    data_label[0:data_size, :] = 0
    # class 2
    x2 = np.reshape(np.random.normal(1, 1, data_size), (data_size, 1))
    y2 = np.reshape(np.random.normal(0.5, 1, data_size), (data_size, 1))
    data_train = np.concatenate((data_train, np.concatenate((x2, y2), axis=1)), axis=0)
    data_label[data_size:2*data_size, :] = 1

    return data_train, data_label


# test data
def get_test_data(start, end, data_size=100):
    data1 = (end - start) * np.random.random((data_size, 1)) + start
    data2 &
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值