混淆矩阵计算公式(总体精度,KAPPA值,用户精度,生产者精度)

1. 用户精度 (User's Accuracy)

用户精度衡量的是从分类结果中正确预测的类别占该类别预测总数的比例。

公式:

  • TP (True Positive): 该类别正确分类的样本数。
  • FP (False Positive): 被错误地分类为该类别的样本数。

2. 生产者精度 (Producer's Accuracy)

生产者精度衡量的是在实际类别中被正确分类的样本所占的比例。

公式:

  • FN (False Negative): 被错误地分类为其他类别的样本数。

 3. 总体精度 (Overall Accuracy)

总体精度衡量的是所有正确预测的样本占总样本数的比例,反映了分类器整体的准确度。

公式:

4. Kappa值 (Kappa Statistic)

Kappa值用于衡量分类结果与随机猜测之间的一致性检验,考虑了偶然正确分类的情况。

公式:

  • Po:即总体精度

计算举例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ykxslbygzjhlx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值