机器人入门路线及参考资料(机器人操作方向)


前言

随着机器人和具身智能时代的到来,机器人越来越受到大家的重视,本文就介绍了机器人(机器人操作方向)的入门路线及重要参考资料,包括数理和编程基础,机器人操作,计算机视觉,机器人实操以及具体的方向突破。


1 数理基础和编程

首先需要具备的就是一定的数理基础和计算机编程能力,这两项也是工科生最先接触的知识。

数理基础包括高数,线代,概率论等。可能很多学生包括博主在内在学习这些数学课程时,并不知道这些数学知识到底和专业之间是什么关系。为了引起大家对数理基础的重视,这里简单举例说明数理知识的重要性。比如力学分析(理力,材力,流力)会用到高数,控制理论会用到高数和线代,计算机视觉会涉及矩阵和概率论,而机器人学则会涉及到以上所有技术。

在学习以上数学知识的同时,可以练习数理推导软件如Matlab,Mathematica等辅助计算,这些软件也可用于机器人的计算和仿真。

计算机编程的底层逻辑想通,按照大学培养方案,最先接触的语言是C语言,重点培养编程的逻辑和程序设计方法。在机器人工程中,用到较多的语言是C++和Python两种语言,一种语言学会之后,再学其他语言速度就会很快。

2 机器人学理论

对于机器人理论部分,首先需要具备机器人学的基础知识,如位姿表示与变换,欧拉角和RPY角,机器人的正逆运动学等。可参考的书籍为熊有伦的《机器人技术基础》。

掌握这些基本概念之后,可以针对专题进行深入研读,如规划or控制,操作or移动,工业机器人or服务机器人,不同专题涉及到的技术侧重点不同。

本文主要针对机器人操作方向,所以重点介绍一下机器人操作方向。该方向主要是研究机器人基于视觉或触觉利用末端执行器(刚性或柔性,仿人手或二指夹爪)与被操作对象进行交互(如抓取,放置,推,重定向等)的科学。
拾起盘子

人手操作(拾起)盘子的案例 [1]。

从力学角度分类可分为运动学操作,静态操作,准静态操作和动态操作,具体概念可以参考卡内基梅隆大学Mason的原著中译本书籍《机器人操作中的力学原理》。从被操作对象角度可分为刚性物体操作和柔性物体的操作,由于刚性物体操作的力锁合和形锁合假设不再适用于柔性物体的操作,所以柔性物体的操作也是当下的研究热点。

此处,也给出MIT的机器人操作课程的官方链接:Robotic Manipulation - Perception, Planning, and Control,供需要的小伙伴自学。

3 计算机视觉

计算机视觉于机器人而言就是机器人的眼睛,可用于机器人的抓取与操作,导航,人机交互等任务中。在机器人操作方面,计算机视觉主要用来识别物体的位姿和状态估计,抓取点检测等。

经典的计算机视觉任务包括图像预处理,图像的分割,图像的特征表述等。这些基本的概念需要了解,可以参考张岩等翻译的中译本书籍《计算机视觉基础》。然后在OpenCV上进行实践,OpenCV提供了丰富的C++和Python语言的API接口,可以直接调用,相关的书籍《学习OpenCV3》和其官方教程https://docs.opencv.org/4.x/d9/df8/tutorial_root.html

接下来就是学习基于深度学习的计算机视觉,常用的套路如下 [2]:

1 学习吴恩达的《机器学习》和《深度学习》课程,了解一些机器学习的知识。
2 了解一些经典的CV模型,如Alexnet、R-CNN系列、YOLO等。
3 在github上找一些tensorflow、pytorch实现上述模型的开源代码。
4 下载VOC、ImageNet、COCO、kaggle等数据集。
5 按照开源代码中的Readme准备数据集,跑一下结果。

上述数据集为计算机视觉中的常用数据集,而针对机器人抓取有更多专门的数据集可以参考博文机器人抓取领域相关数据集

传统视觉和基于深度学习的视觉各有优缺点 [3, 4],在实际项目中,大多数情况下需要结合使用。

4 机器人实操

在了解以上基本概念之后,就可以上手真实机器人实践了,这里以基于ROS的机器人抓取系统为例,阐述需要掌握知识和要解决的问题。

首先,ROS(机器人操作系统)的一些基本概念要清楚,如节点,话题,功能包等基本概念,以及如何创建发布者和订阅者以及定义要发布的消息等,这些是机器人操作系统的基本通信的机制。

其次,学会使用ROS中的常用组件,如launch,rqt,rviz,rosbag等常用组件,这些组件是机器人调试时非常方便的工具。

最后,就是针对机器人类型进行建模和仿真,对于机械臂来说,ROS中已经集成了用于机械臂操作的开发平台——MoveIt,我们可以直接使用MoveIt来控制我们的机械臂。

ROS的参考资料可以参考古月居(胡春旭)的视频课程ROS入门21讲和书籍《ROS机器人开发实践》。

在掌握了ROS之后,就是在此基础上进行开发了,包括手眼标定,夹爪通信,机械臂规划等。下图所示为京东2017 JRC X机器人挑战赛上其中一个参赛队伍的机器人系统 [5],一个基于ROS开发的机器人移动操作系统。
京东机器人挑战赛

5 专攻方向

当具备基础知识和实操能力之后,就需要根据具体的专攻方向学习最新的论文,开展工程或者研究工作。如3D感知与操作,类人操作,移动操作,人机交互,柔性物体的操作等。

一般情况下,较新的方向是没有书籍的,可以先从综述开始,然后是方向密切相关文献的精读。关注专攻方向最新动态,如顶会的Workshop等,还有跟踪领域内的牛人的发文。

2024年是具身智能到来的时代,当然,具身智能也可以和机器人操作相结合,即将大模型或者Learning应用于机器人操作任务中去,具身智能的入门路线参考具身智能入门学习技术路线

最后推荐一下机器人操作方向上的媒体号:

  1. 关于机器人操作方向,推荐公众号:机器人操作前沿动态,按时跟踪全球最新学术进展。
  2. 关于柔性物体的操作,推荐博客:机器人的柔性物体操作综述汇总(持续更新),汇总了近几年的柔物操作的综述文章。

总结

以上就是今天要讲的内容,本文介绍了机器人操作方向的入门路线,从数理基础和编程,到机器人学理论和计算机视觉,再到机器人的实操和方向突破,阐述了机器人操作方向所需要的知识体系并给出重要参考资料。当然,入门时,不一定要按照顺序学习,边学边应用效果更佳。

Reference:

[1] MIT机器人操作课程:Robotic Manipulation - Perception, Planning, and Control
[2] 知乎文章:计算机视觉学习路线
[3] CSDN博客:论文笔记:传统CV和深度学习方法的比较
[4] O’Mahony N, Campbell S, Carvalho A, et al. Deep learning vs. traditional computer vision[C]//Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference (CVC), Volume 1 1. Springer International Publishing, 2020: 128-144.
[5] CSDN博客:ROS下实现机器人序列任务的执行控制

<think>好的,用户现在问的是关于机械臂的看法和学习路线。首先,我需要回顾之前的对话,用户之前询问了末端采摘机械手的设计与控制应用创新,现在转向更广泛的机械臂领域,可能对机械臂的整体认识和学习方法感兴趣。 用户可能是学生或刚进入该领域的研究者,想要了解如何系统地学习机械臂相关知识。他们可能对机械臂的应用、核心技术以及学习路径不太清楚,需要从基础到进阶的指导。 首先,我需要整理机械臂的主要应用领域,比如工业、医疗、服务等,帮助用户建立全面的认识。然后分析核心技术,包括运动学、动力学、控制理论、感知与决策等模块,这部分可能需要结合之前的采摘机械手例子,但扩展到更广泛的机械臂。 学习路线部分,用户可能需要分阶段的建议,比如数学基础、编程技能、理论学习、实践项目等。要强调数学的重要性,如线性代数、微积分、几何,这些是运动学和动力学的基础。同时,编程方面,Python和C++是必备的,ROS(机器人操作系统)也是关键工具。 还要考虑用户可能的实践需求,建议他们从仿真环境开始,如Gazebo或V-REP,再过渡到实际硬件。推荐经典教材和在线资源,比如《机器人学导论》和Coursera的相关课程。同时,提醒关注前沿技术,如AI在机械臂中的应用,以及多学科交叉的趋势。 最后,要总结机械臂的发展前景,鼓励用户结合兴趣选择细分方向,保持持续学习。需要确保回答结构清晰,步骤明确,语言简洁,避免过于学术化,让不同背景的用户都能理解。同时,检查是否有遗漏的重要点,比如开源项目或社区资源,这些对自学很有帮助。</think>以下是关于机械臂的系统认知与学习路线指南,结合技术本质与工程实践需求展开说明: --- ### 一、机械臂技术本质解析 #### 1. 核心价值维度 - **精度维度** - 工业级:重复定位精度$<±0.02\ \text{mm}$(如KUKA KR QUANTEC) - 协作型:绝对定位精度$<±0.1\ \text{mm}$(UR5e参数) - **负载-自重比** - 传统机械臂:$1:8$(如负载$20\ \text{kg}$自重$160\ \text{kg}$) - 新型轻量化:$1:4$(碳纤维+镁合金结构) #### 2. 关键技术模块 ```mermaid graph TD A[机械臂系统] --> B[运动学] A --> C[动力学] A --> D[控制理论] A --> E[感知与决策] B --> B1[正运动学DH模型] B --> B2[逆运动学数值解] C --> C1[拉格朗日方程] C --> C2[牛顿-欧拉递推] D --> D1[PID控制] D --> D2[阻抗控制] E --> E1[视觉伺服] E --> E2[力觉反馈] ``` --- ### 二、系统学习路线规划(分阶段) #### 阶段1:数学与编程基础(建议时长:3个月) - **数学工具** - 线性代数:矩阵运算、特征值分解(推荐《Linear Algebra Done Right》) - 微分几何:李群SO(3)/SE(3)(重点理解$\mathfrak{se}(3)$李代数) - 优化理论:梯度下降法、QP求解器(CVXPY实践) - **编程技能** - Python:NumPy实现DH参数计算(代码示例) ```python def dh_matrix(theta, d, a, alpha): return np.array([ [np.cos(theta), -np.sin(theta)*np.cos(alpha), np.sin(theta)*np.sin(alpha), a*np.cos(theta)], [np.sin(theta), np.cos(theta)*np.cos(alpha), -np.cos(theta)*np.sin(alpha), a*np.sin(theta)], [0, np.sin(alpha), np.cos(alpha), d], [0, 0, 0, 1] ]) ``` - C++:ROS功能包开发(重点学习catkin工具链) #### 阶段2:核心理论掌握(建议时长:6个月) 1. **运动学深度实践** - 正运动学:DH参数法建模(完成6轴机械臂建模实验) - 逆运动学: - 解析法(Pieper准则应用) - 数值法(牛顿-拉夫森法实现,收敛条件$\|e\|<0.001\ \text{mm}$) 2. **动力学与控制** - 动力学建模: $$ \tau = M(q)\ddot{q} + C(q,\dot{q}) + G(q) $$ 使用SymPy推导2自由度机械臂方程 - 控制算法: - 计算力矩控制(反馈线性化) - 自适应控制(Lyapunov稳定性证明) #### 阶段3:系统集成实战(建议时长:持续迭代) - **仿真环境搭建** - Gazebo+MoveIt!实现避障规划(RRT*算法调参) - CoppeliaSim验证动力学模型(摩擦系数$\mu \in [0.1,0.6]$设置) - **硬件在环开发** - EtherCAT总线控制(周期$1\ \text{ms}$) - 力控实验(六维力传感器数据融合) --- ### 三、关键学习资源 1. **经典著作** - 《机器人学导论》John J. Craig(运动学必读) - 《Robot Dynamics and Control》Spong(动力学圣经) 2. **开源项目** - ROS-Industrial(工业机械臂标准接口) - Drake(MIT动力学仿真框架) 3. **实验平台** - UR3+Robotiq夹爪(协作机器人入门套件) - Franka Emika(阻抗控制研究平台) --- ### 四、前沿方向建议 1. **AI融合方向** - 使用PPO算法训练抓取策略(奖励函数设计:$r_t = -\|e_p\| - 0.1\|e_o\|$) - GNN用于多机协作路径规划 2. **新型驱动技术** - 仿生肌肉驱动(McKibben气动肌肉$\sigma_{max}=2\ \text{MPa}$) - 压电陶瓷微操作(位移分辨率$1\ \text{nm}$) 3. **数字孪生系统** - 基于Digital Twin的预测维护(LSTM预测故障准确率$>92\%$) --- ### 五、发展认知 - **技术瓶颈**: - 高速运动下的振动抑制(需满足$\omega_n > 50\ \text{Hz}$) - 非结构化环境自适应(如未知物体抓取成功率$<65\%$) - **趋势判断**: 未来5年协作机器人市场将保持$30\%$年复合增长率,**柔顺控制**与**AI视觉**成为差异化竞争核心 建议学习者结合自身背景选择细分方向(如医疗机器人需加强运动规划研究,工业场景侧重精度与可靠性),持续关注ICRA、IROS等顶级会议最新成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

EAI-Robotics

赞赏是支持,更是共同成长的见证

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值