Box-Jenkins建模流程(时间序列 补)

本文详细介绍了Box-Jenkins方法中ARIMA模型的构建流程,包括检验序列的平稳性,通过差分使序列达到平稳,利用ACF和PACF识别模型参数,进行模型拟合并检查残差,最终完成预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Box-Jenkins 建模流程
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第一步:检验平稳性

  1. 做时序图
  2. Augmented Dickey-Fuller检验存在平方根
    在这里插入图片描述
    第二步:差分(若是非平稳序列)
  3. 做时序图
  4. Augmented Dickey-Fuller检验存在平方根
    在这里插入图片描述
    第三步:模型识别
    差分后的ACF和PACF
    在这里插入图片描述
    第四步:模型拟合ARIMA(1,1,0)检验
  5. 残差序列图
  6. 残差后的ACF及PACF
  7. Ljung-Box检验
    在这里插入图片描述
    第五步:预测
    在这里插入图片描述

注意:对于非平稳序列,如果先进行差分后的结果不满足要求,则需要在原有基础上继续进行差分,直到差分后的结果属于平稳性序列

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值