MLE、MAP、以及Bayes公式

转载自 nebulaf91的专栏
原贴地址:http://blog.csdn.net/u011508640/article/details/72815981。
这里把公式的排版弄清晰了方便阅读。

前言

最大似然估计(Maximum Likelihood Estimation, 简称 MLE)和最大后验概率估计(Maximum A Posteriori Estimation, 简称 MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们。下文将详细说明MLE和MAP的思路与区别。

但别急,我们先从概率和统计的区别讲起。

概率和统计是一个东西吗?

概率(Probabilty)和统计(Statistics)看似两个相近的概念,其实研究的问题刚好相反。

概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等)。 举个例子,我想研究怎么养猪(模型是猪),我选好了想养的品种、喂养方式、猪棚的设计等等(选择参数),我想知道我养出来的猪大概能有多肥,肉质怎么样(预测结果)。

统计研究的问题则相反。统计是,有一堆数据,要利用这堆数据去预测模型和参数。仍以猪为例。现在我买到了一堆肉,通过观察和判断,我确定这是猪肉(这就确定了模型。在实际研究中,也是通过观察数据推测模型是/像高斯分布的、指数分布的、拉普拉斯分布的等等),然后,可以进一步研究,判定这猪的品种、这是圈养猪还是跑山猪还是网易猪,等等(推测模型参数)。

一句话总结:概率是已知模型和参数,推数据。统计是已知数据,推模型和参数。

显然,本文解释的 MLE 和 MAP 都是统计领域的问题。它们都是用来推测参数的方法。为什么会存在着两种不同方法呢? 这需要理解贝叶斯思想。我们来看看贝叶斯公式。

贝叶斯公式到底在说什么?

学习机器学习和模式识别的人一定都听过贝叶斯公式(Bayes’ Theorem):

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) (1) P\left(A|B\right) = \frac{P\left(B|A\right)P\left(A\right)}{P\left(B\right)} \tag{1} P(AB)=P(B)P(BA)P(A)(1)

贝叶斯公式看起来很简单,无非是倒了倒条件概率和联合概率的公式。

B B B 展开,可以写成:

P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ∣ A ) P ( A ) + P ( B ∣ ∼ A ) P ( ∼ A ) (2) P\left(A|B\right) = \frac{P\left(B|A\right)P\left(A\right)}{P\left(B|A\right)P\left(A\right)+P\left(B|\sim A\right)P\left(\sim A\right)} \tag{2} P(AB)=P(BA)P(A)+P(BA)P(A)P(BA)P(A)(2)
∼ A \sim A A” 表示 “非 A A A”。这个式子就很有意思了。

想想这个情况。一辆汽车(或者电瓶车)的警报响了,你通常是什么反应?有小偷?撞车了? 不。 你通常什么反应都没有。因为汽车警报响一响实在是太正常了!每天都要发生好多次。本来,汽车警报设置的功能是,出现了异常情况,需要人关注。然而,由于虚警实在是太多,人们渐渐不相信警报的功能了。

贝叶斯公式就是在描述,你有多大把握能相信一件证据?(how much you can trust the evidence)

我们假设响警报的目的就是想说汽车被砸了。把 A A A 计作“汽车被砸了”, B B B 计作“警报响了”,带进贝叶斯公式里看。我们想求等式左边发生 A ∣ B A∣B AB 的概率,这是在说警报响了,汽车也确实被砸了。汽车被砸 引起(trigger) 警报响,即 B ∣ A B∣A BA 。但是,也有可能是汽车被小孩子皮球踢了一下、被行人碰了一下等其他原因(统统计作 ∼ A \sim A A ),其他原因引起汽车警报响了,即 B ∣ ∼ A B|\sim A BA。那么,现在突然听见警报响了,这时汽车已经被砸了的概率是多少呢(这即是说,警报响这个证据有了,多大把握能相信它确实是在报警说汽车被砸了)?想一想,应当这样来计算。用警报响起、汽车也被砸了这事件的数量,除以响警报事件的数量(这即式(1) )。进一步展开,即警报响起、汽车也被砸了的事件的数量,除以警报响起、汽车被砸了的事件数量加上警报响起、汽车没被砸的事件数量(这即式(2))。

可能有点绕,请稍稍想一想。

再思考式(2) 。想让 P ( A ∣ B ) = 1 P(A|B) = 1 P(AB)=1,即警报响了,汽车一定被砸了,该怎么做呢?让 P ( B ∣ ∼ A ) = 0 P(B|\sim A) = 0 P(BA)=0 即可。很容易想清楚,假若让 P ( ∼ A ) = 0 P(\sim A) = 0 P(A)=0,即杜绝了汽车被球踢、被行人碰到等等其他所有情况,那自然,警报响了,只剩下一种可能——汽车被砸了。这即是提高了响警报这个证据的说服力。

从这个角度总结贝叶斯公式:做判断的时候,要考虑所有的因素。 老板骂你,不一定是你把什么工作搞砸了,可能只是他今天出门前和太太吵了一架。

再思考式(2) 。观察式(2) 右边的分子 P ( B ∣ A ) P(B|A) P(BA) 为汽车被砸后响警报的概率。姑且仍为这是1吧。但是,若 P ( A ) P(A) P(A) 很小,即汽车被砸的概率本身就很小,则 P ( B ∣ A ) P ( A ) P(B|A)P(A) P(BA)P(A) 仍然很小,即式(2)右边分子仍然很小, P ( A ∣ B ) P(A|B) P(AB) 还是大不起来。 这里, P ( A ) P(A) P(A) 即是常说的先验概率,如果A的先验概率很小,就算 P ( B ∣ A ) P(B|A) P(BA) 较大,可能 A A A 的后验概率 P ( A ∣ B ) P(A|B) P(AB) 还是不会大(假设 P ( B ∣ ∼ A ) P ( ∼ A ) P(B|\sim A)P(\sim A) P(BA)P(A) 不变的情况下)。

从这个角度思考贝叶斯公式:一个本来就难以发生的事情,就算出现某个证据和他强烈相关,也要谨慎。证据很可能来自别的虽然不是很相关,但发生概率较高的事情。 发现刚才写的代码编译报错,可是我今天状态特别好,这语言我也很熟悉,犯错的概率很低。因此觉得是编译器出错了。 ————别,还是先再检查下自己的代码吧。

好了好了,说了这么多,下面言归正传,说一说MLE。

——————不行,还得先说似然函数(likelihood function)

最大似然估计(MLE)

假设有一个造币厂生产某种硬币,现在我们拿到了一枚这种硬币,想试试这硬币是不是均匀的。即想知道抛这枚硬币,正面出现的概率(记为 θ \theta θ )是多少?

这是一个统计问题,回想一下,解决统计问题需要什么? 数据!

于是我们拿这枚硬币抛了 10 10 10 次,得到的数据( x 0 x_0 x0)是:反正正正正反正正正反。我们想求的正面概率 θ \theta θ 是模型参数,而抛硬币模型我们可以假设是 二项分布。

那么,出现实验结果 x 0 x_0 x0(即反正正正正反正正正反)的似然函数是多少呢?
f ( x 0 , θ ) = ( 1 − θ ) ⋅ θ ⋅ θ ⋅ θ ⋅ θ ⋅ ( 1 − θ ) ⋅ θ ⋅ θ ⋅ θ ⋅ ( 1 − θ ) = ( 1 − θ ) 3 ⋅ θ 7 = f ( θ ) f(x_0,\theta)=(1-\theta)\cdot \theta \cdot \theta \cdot \theta \cdot \theta \cdot (1-\theta)\cdot \theta \cdot \theta \cdot \theta \cdot (1-\theta)=(1-\theta)^3\cdot\theta^7=f(\theta) f(x0,θ)=(1θ)θθθθ(1θ)θθθ(1θ)=(1θ)3θ7=f(θ)
注意,这是个只关于 θ \theta θ 的函数。而最大似然估计,顾名思义,就是要最大化这个函数。我们可以画出 f ( θ ) f(\theta) f(θ) 的图像:
在这里插入图片描述
可以看出,在 θ = 0.7 \theta = 0.7 θ=0.7 时,似然函数取得最大值。

这样,我们已经完成了对 θ \theta θ 的最大似然估计。即,抛10次硬币,发现7次硬币正面向上,最大似然估计认为正面向上的概率是 0.7 0.7 0.7 。(ummm…这非常直观合理,对吧?)

且慢,一些人可能会说,硬币一般都是均匀的啊! 就算你做实验发现结果是“反正正正正反正正正反”,我也不信 θ = 0.7 \theta = 0.7 θ=0.7

这里就包含了贝叶斯学派的思想了——要考虑先验概率。 为此,引入了最大后验概率估计。

最大后验概率估计

最大似然估计是求参数 θ \theta θ , 使似然函数 P ( x 0 ∣ θ ) P(x_0 | \theta) P(x0θ) 最 大 。 最大后验概率估计则是想求 θ \theta θ 使 P ( x 0 ∣ θ ) P ( θ ) P(x_0 | \theta)P(\theta) P(x0θ)P(θ) 最大。求得的 θ \theta θ 不单单让似然函数大, θ \theta θ 自己出现的先验概率也得大。(这有点像正则化里加惩罚项的思想,不过正则化里是利用加法,而MAP里是利用乘法)

MAP其实是在最大化 P ( θ ∣ x 0 ) = P ( x 0 ∣ θ ) P ( θ ) P ( x 0 ) P(\theta|x_0)=\frac{P(x_0|\theta)P(\theta)}{P(x_0)} P(θx0)=P(x0)P(x0θ)P(θ),不过因为 x 0 x_0 x0 是确定的(即投出的“反正正正正反正正正反”), P ( x 0 ) P(x_0) P(x0) 已知值,所以去掉了分母 P ( x 0 ) P(x_0) P(x0) ,假设“投10次硬币”是一次实验,实验做了1000次,“反正正正正反正正正反”出现了 n n n 次,则 P ( x 0 ) = n / 1000 P(x_0)=n/1000 P(x0)=n/1000 。总之,这是一个可以由数据集得到的值。)

最大化 P ( θ ∣ x 0 ) P(\theta|x_0) P(θx0) 的意义也很明确, x 0 x_0 x0 已经出现了,要求 θ \theta θ 取什么值使 P ( θ ∣ x 0 ) P(\theta|x_0) P(θx0) 最大。顺带一提, P ( θ ∣ x 0 ) P(\theta|x_0) P(θx0) 即后验概率,这就是“最大后验概率估计”名字的由来。

对于投硬币的例子来看,我们认为(”先验地知道“) θ \theta θ 取0.5的概率很大,取其他值的概率小一些。我们用一个高斯分布来具体描述我们掌握的这个先验知识,例如假设 P ( θ ) P(\theta) P(θ) 为均值 0.5 0.5 0.5,方差 0.1 0.1 0.1 的高斯函数,如下图:
在这里插入图片描述
P ( x 0 ∣ θ ) P ( θ ) P(x_0|\theta)P(\theta) P(x0θ)P(θ) 的函数图像为:

在这里插入图片描述

注意,此时函数取最大值时, θ \theta θ 取值已向左偏移,不再是 0.7 0.7 0.7 。实际上,在 θ = 0.558 \theta = 0.558 θ=0.558 时函数取得了最大值。即,用最大后验概率估计,得到 θ = 0.558 \theta = 0.558 θ=0.558

最后,那要怎样才能说服一个贝叶斯派相信 θ = 0.7 \theta = 0.7 θ=0.7 呢?你得多做点实验。

如果做了 1000 1000 1000 次实验,其中 700 700 700 次都是正面向上,这时似然函数为:

在这里插入图片描述
如果仍然假设 P ( θ ) P(\theta) P(θ) 为均值 0.5 0.5 0.5 ,方差 0.1 0.1 0.1 的高斯函数, P ( x 0 ∣ θ ) P ( θ ) P(x_0 | \theta) P(\theta) P(x0θ)P(θ) 的函数图像为:
在这里插入图片描述
θ = 0.696 \theta = 0.696 θ=0.696 处, P ( x 0 ∣ θ ) P ( θ ) P(x_0 | \theta) P(\theta) P(x0θ)P(θ) 取得最大值。

这样,就算一个考虑了先验概率的贝叶斯派,也不得不承认得把 θ \theta θ 估计在 0.7 0.7 0.7 附近了。

PS. 要是遇上了顽固的贝叶斯派,认为 P ( θ = 0.5 ) = 1 P(\theta = 0.5) = 1 P(θ=0.5)=1 ,那就没得玩了。。 无论怎么做实验,使用MAP估计出来都是 θ = 0.5 \theta = 0.5 θ=0.5。这也说明,一个合理的先验概率假设是很重要的。(通常,先验概率能从数据中直接分析得到)

最大似然估计和最大后验概率估计的区别

相信读完上文,MLE和MAP的区别应该是很清楚的了。MAP就是多个作为因子的先验概率 P ( θ ) P(\theta) P(θ) 。或者,也可以反过来,认为MLE是把先验概率 P ( θ ) P(\theta) P(θ) 认为等于 1 1 1,即认为 θ \theta θ 是均匀分布。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值