itti文章的笔记

该博客详细介绍了从RGB图像开始,经过高斯平滑、降采样、颜色和亮度转换,再到Gabor滤波和差分特征图计算的图像处理流程。通过这一系列步骤,提取图像的亮度、颜色和方向特征,并最终合并成一张特征图。过程中涉及OpenCV库函数的使用,如pyrDown、getGaborKernel和filter2D,以及特征图的归一化和合并策略。
摘要由CSDN通过智能技术生成

结合此处的代码,重新归纳整理一下算法的流程:

  1. 输入一幅分辨率的 640 × 480 640\times 480 640×480 的RGB图像,记为 I 0 I_0 I0
  2. I 0 I_0 I0 高斯平滑,然后再进行 s = 2 s=2 s=2 降采样。即将图像尺寸行和列方向缩减一半(代码中是用 cv::pyrDown 函数一次处理),得到 I 1 I_1 I1 注:OpenCV实现了用于创建图像金字塔的两个函数 pyrDownpryUp
  3. 重复第2步,得到 I 2 , I 3 , I 4 , I 5 , I 6 , I 7 , I 8 I_2, I_3, I_4, I_5, I_6, I_7, I_8 I2,I3,I4,I5,I6,I7,I8 I 8 I_8 I8 的长宽分别为 I 0 I_0 I0 1 / 256 1/256 1/256 (注意 640 和480 都不能被 256 整除,个人觉得输入分辨率应该调整为256的倍数,不过这是小问题)
  4. I 0 ∼ I 8 I_0\sim I_8 I0I8 分别有 r r r g g g b b b 分量,计算每一个 I k I_k Ik 的“扩展颜色” R R R G G
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值