数据结构(四)堆

如何手写一个堆

需要支持的操作:

1.插入一个数                                 heap[ ++ size] = x ; up(size);

2.求集合中的最小值                       heap(1);

3.删除最小值                                  heap(1) = heap(size); size --; down(1);

4.删除任意一个元素                       heap(k) = heap(size); size --; down(k); up(k);

5.修改任意一个元素                       heap(k) = x; down(k); up(k);

堆的结构

是一棵完全二叉树

小根堆,上边的都比下边的小

存储方式:一维数组,根节点 x ,左儿子 2x, 右儿子 2x+1

down(x) 向下调整, up(x) 向上调整

示例1

输入一个长度为n的整数数列,从小到大输出前m小的数。

输入格式

第一行包含整数n和m。

第二行包含n个整数,表示整数数列。

输出格式

共一行,包含m个整数,表示整数数列中前m小的数。

数据范围

1≤m≤n≤105 1≤m≤n≤105,
1≤数列中元素≤1091≤数列中元素≤109

输入样例:

5 3
4 5 1 3 2

输出样例:

1 2 3
//用数组实现堆
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 100010;

int n, m;
int h[N], size;//h[N]一维数组用来存放堆

void down(int u)
{
    int t = u;//t存三个点里的最小值
    if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;//如果左儿子存在且小于根节点
    if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;//如果右儿子存在且小于根节点
    if (u != t)//如果最小值不是根节点
    {
        swap(h[u], h[t]);//把根节点和最小节点交换,数值交换
        down(t);//再down(t)
    }
}

void up(int u)
{
    while(u / 2 && h[u / 2] > h[u]);//u/2是父节点编号,如果父节点大,要把自己换上去
    {
        swap(h[u / 2], h[u]);
        u /= 2;//迭代
    }
}

int main()
{
    scanf("%d%d", &n, &m);
    for (int i = 1; i <= n; i ++ ) scanf("%d", &h[i]);//读入数组,乱序放入堆
    size = n;

    for (int i = n / 2; i; i -- ) down(i);//建堆,整理堆的顺序,从倒数第二层都down一遍,时间复杂度O(n)

    while (m -- )
    {
        printf("%d ", h[1]);//输出最小值,堆顶
        h[1] = h[size -- ];//删除堆顶
        down(1);
    }

    puts("");

    return 0;
}

 示例2

维护一个集合,初始时集合为空,支持如下几种操作:

  1. “I x”,插入一个数x;
  2. “PM”,输出当前集合中的最小值;
  3. “DM”,删除当前集合中的最小值(数据保证此时的最小值唯一);
  4. “D k”,删除第k个插入的数;
  5. “C k x”,修改第k个插入的数,将其变为x;

现在要进行N次操作,对于所有第2个操作,输出当前集合的最小值。

输入格式

第一行包含整数N。

接下来N行,每行包含一个操作指令,操作指令为”I x”,”PM”,”DM”,”D k”或”C k x”中的一种。

输出格式

对于每个输出指令“PM”,输出一个结果,表示当前集合中的最小值。

每个结果占一行。

数据范围

1≤N≤1051≤N≤105
−109≤x≤109−109≤x≤109
数据保证合法。

输入样例:

8
I -10
PM
I -10
D 1
C 2 8
I 6
PM
DM

输出样例:

-10
6

 

//djskla里需要用到这个带映射的堆
#include <iostream>
#include <algorithm>
#include <string.h>

using namespace std;

const int N = 100010;

int h[N], ph[N], hp[N], size;//ph[k]存第k个插入的数在堆里的下标,hp[j]堆里的下标是J的点对应的是第k个插入的数

//交换两个元素时需要交换映射关系
void heap_swap(int a, int b)
{
    swap(ph[hp[a]],ph[hp[b]]);//hp[a],hp[b]后修改
    swap(hp[a], hp[b]);
    swap(h[a], h[b]);
}

void down(int u)
{
    int t = u;
    if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
    if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
    if (u != t)
    {
        heap_swap(u, t);
        down(t);
    }
}

void up(int u)
{
    while (u / 2 && h[u] < h[u / 2])
    {
        heap_swap(u, u / 2);
        u >>= 1;
    }
}

int main()
{
    int n, m = 0;//m记录是第几个加入的数
    scanf("%d", &n);
    while (n -- )
    {
        char op[5];
        int k, x;
        scanf("%s", op);
        if (!strcmp(op, "I"))
        {
            scanf("%d", &x);
            size ++ ;
            m ++ ;
            ph[m] = size, hp[size] = m;//相互映射
            h[size] = x;
            up(size);
        }
        else if (!strcmp(op, "PM")) printf("%d\n", h[1]);
        else if (!strcmp(op, "DM"))
        {
            heap_swap(1, size);
            size -- ;
            down(1);
        }
        else if (!strcmp(op, "D"))
        {
            scanf("%d", &k);
            k = ph[k];
            heap_swap(k, size);
            size -- ;
            up(k);
            down(k);//执行其中之一
        }
        else
        {
            scanf("%d%d", &k, &x);
            k = ph[k];
            h[k] = x;
            up(k);
            down(k);
        }
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值