如何手写一个堆
需要支持的操作:
1.插入一个数 heap[ ++ size] = x ; up(size);
2.求集合中的最小值 heap(1);
3.删除最小值 heap(1) = heap(size); size --; down(1);
4.删除任意一个元素 heap(k) = heap(size); size --; down(k); up(k);
5.修改任意一个元素 heap(k) = x; down(k); up(k);
堆的结构
是一棵完全二叉树
小根堆,上边的都比下边的小
存储方式:一维数组,根节点 x ,左儿子 2x, 右儿子 2x+1
down(x) 向下调整, up(x) 向上调整
示例1
输入一个长度为n的整数数列,从小到大输出前m小的数。
输入格式
第一行包含整数n和m。
第二行包含n个整数,表示整数数列。
输出格式
共一行,包含m个整数,表示整数数列中前m小的数。
数据范围
1≤m≤n≤105 1≤m≤n≤105,
1≤数列中元素≤1091≤数列中元素≤109
输入样例:
5 3
4 5 1 3 2
输出样例:
1 2 3
//用数组实现堆
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010;
int n, m;
int h[N], size;//h[N]一维数组用来存放堆
void down(int u)
{
int t = u;//t存三个点里的最小值
if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;//如果左儿子存在且小于根节点
if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;//如果右儿子存在且小于根节点
if (u != t)//如果最小值不是根节点
{
swap(h[u], h[t]);//把根节点和最小节点交换,数值交换
down(t);//再down(t)
}
}
void up(int u)
{
while(u / 2 && h[u / 2] > h[u]);//u/2是父节点编号,如果父节点大,要把自己换上去
{
swap(h[u / 2], h[u]);
u /= 2;//迭代
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i ++ ) scanf("%d", &h[i]);//读入数组,乱序放入堆
size = n;
for (int i = n / 2; i; i -- ) down(i);//建堆,整理堆的顺序,从倒数第二层都down一遍,时间复杂度O(n)
while (m -- )
{
printf("%d ", h[1]);//输出最小值,堆顶
h[1] = h[size -- ];//删除堆顶
down(1);
}
puts("");
return 0;
}
示例2
维护一个集合,初始时集合为空,支持如下几种操作:
- “I x”,插入一个数x;
- “PM”,输出当前集合中的最小值;
- “DM”,删除当前集合中的最小值(数据保证此时的最小值唯一);
- “D k”,删除第k个插入的数;
- “C k x”,修改第k个插入的数,将其变为x;
现在要进行N次操作,对于所有第2个操作,输出当前集合的最小值。
输入格式
第一行包含整数N。
接下来N行,每行包含一个操作指令,操作指令为”I x”,”PM”,”DM”,”D k”或”C k x”中的一种。
输出格式
对于每个输出指令“PM”,输出一个结果,表示当前集合中的最小值。
每个结果占一行。
数据范围
1≤N≤1051≤N≤105
−109≤x≤109−109≤x≤109
数据保证合法。
输入样例:
8
I -10
PM
I -10
D 1
C 2 8
I 6
PM
DM
输出样例:
-10
6
//djskla里需要用到这个带映射的堆
#include <iostream>
#include <algorithm>
#include <string.h>
using namespace std;
const int N = 100010;
int h[N], ph[N], hp[N], size;//ph[k]存第k个插入的数在堆里的下标,hp[j]堆里的下标是J的点对应的是第k个插入的数
//交换两个元素时需要交换映射关系
void heap_swap(int a, int b)
{
swap(ph[hp[a]],ph[hp[b]]);//hp[a],hp[b]后修改
swap(hp[a], hp[b]);
swap(h[a], h[b]);
}
void down(int u)
{
int t = u;
if (u * 2 <= size && h[u * 2] < h[t]) t = u * 2;
if (u * 2 + 1 <= size && h[u * 2 + 1] < h[t]) t = u * 2 + 1;
if (u != t)
{
heap_swap(u, t);
down(t);
}
}
void up(int u)
{
while (u / 2 && h[u] < h[u / 2])
{
heap_swap(u, u / 2);
u >>= 1;
}
}
int main()
{
int n, m = 0;//m记录是第几个加入的数
scanf("%d", &n);
while (n -- )
{
char op[5];
int k, x;
scanf("%s", op);
if (!strcmp(op, "I"))
{
scanf("%d", &x);
size ++ ;
m ++ ;
ph[m] = size, hp[size] = m;//相互映射
h[size] = x;
up(size);
}
else if (!strcmp(op, "PM")) printf("%d\n", h[1]);
else if (!strcmp(op, "DM"))
{
heap_swap(1, size);
size -- ;
down(1);
}
else if (!strcmp(op, "D"))
{
scanf("%d", &k);
k = ph[k];
heap_swap(k, size);
size -- ;
up(k);
down(k);//执行其中之一
}
else
{
scanf("%d%d", &k, &x);
k = ph[k];
h[k] = x;
up(k);
down(k);
}
}
return 0;
}