pytorch+resnet18实现长尾数据集分类

实验基于论文: Class-Balanced Loss Based on Effective Number of Samples

论文解读:https://blog.csdn.net/weixin_41735859/article/details/105637597

Class-balanced-loss代码地址:https://github.com/vandit15/Class-balanced-loss-pytorch

resnet18代码参考链接:https://blog.csdn.net/sunqiande88/article/details/80100891

第一步:制作数据集

论文中通过公式 n = n i u i n = n_iu^i n=niui i i i为类索引.制作长尾cifar10数据集.以下代码以不均匀比例100为例.论文作者制作好的数据集,我们也可以通过科学上网点击该谷歌云链接下载.

loadcifar.py

import torch
import torch.utils.data as Data
import torchvision.transforms as transforms
import numpy as np
from PIL import Image

def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict
# 从源文件读取数据
# 返回 train_data[12406,3072]和labels[12406]
#    test_data[10000,3072]和labels[10000]
def get_data(train=False):
    data = None
    labels = None
    new_data = None
    new_labels = []

    if train == True:
        for i in range(1, 6):
            batch = unpickle('data/cifar-10-batches-py/data_batch_' + str(i))
            if i == 1:
                data = batch[b'data']
                labels = batch[b'labels']
            else:
                data = np.concatenate([data, batch[b'data']])
                labels = np.concatenate([labels, batch[b'labels']])

        count = np.zeros((10),dtype=np.int)
        for i in range(len(labels)):
            labels[i] = labels[i].reshape(1,1)
            data[i] = data[i].reshape((1,3072))
            # 设置 n = n_iu^i
            if count[labels[i]] < int(np.floor(5000 * ((1 / 100) ** (1 / 9)) ** (labels[i]))):
                count[labels[i]] += 1
                if i == 0:
                    new_data = data[i]
                else:
                    new_data = np.concatenate([new_data,data[i]])
                new_labels.append(labels[i])
            else:
                continue
        new_labels = np.array(new_labels)
        new_data = new_data.reshape(-1,3072)

    else:
        batch = unpickle('data/cifar-10-batches-py/test_batch')
        new_data = batch[b'data']
        new_labels = batch[b'labels']

    return new_data, new_labels

# 图像预处理函数,Compose会将多个transform操作包在一起
# 对于彩色图像,色彩通道不存在平稳特性
transform = transforms.Compose([
    # ToTensor是指把PIL.Image(RGB) 或者numpy.ndarray(H x W x C)
    # 从0到255的值映射到0到1的范围内,并转化成Tensor格式。
    transforms.ToTensor(),
    # Normalize函数将图像数据归一化到[-1,1]
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 将标签转换为torch.LongTensor
def target_transform(label):
    label = np.array(label)
    target = torch.from_numpy(label).long()
    return target

'''
自定义数据集读取框架来载入cifar10数据集
需要继承data.Dataset
'''
class Cifar10_Dataset(Data.Dataset):
    def __init__(self, train=True, transform=None, target_transform=None):
        # 初始化文件路径
        self.transform = transform
        self.target_transform = target_transform
        self.train = train

        # 载入训练数据集
        if self.train:
            self.train_data, self.train_labels = get_data(train)
            num = self.train_data.shape[0]
            self.train_data = self.train_data.reshape((num, 3, 32, 32))
            # 将图像数据格式转换为[height,width,channels]方便预处理
            self.train_data = self.train_data.transpose((0, 2, 3, 1))
            # 载入测试数据集
        else:
            self.test_data, self.test_labels = get_data()
            self.test_data = self.test_data.reshape((10000, 3, 32, 32))
            self.test_data = self.test_data.transpose((0, 2, 3, 1))
        pass

    def __getitem__(self, index):
        # 从数据集中读取一个数据并对数据进行
        # 预处理返回一个数据对,如(data,label)
        if self.train:
            img, label = self.train_data[index], self.train_labels[index]
        else:
            img, label = self.test_data[index], self.test_labels[index]
        img = Image.fromarray(img)
        # 图像预处理
        if self.transform is not None:
            img = self.transform(img)
        # 标签预处理
        if self.target_transform is not None:
            target = self.target_transform(label)
        return img, target

    def __len__(self):
        # 返回数据集的size
        if self.train:
            return len(self.train_data)
        else:
            return len(self.test_data)

if __name__ == '__main__':
    # 读取训练集和测试集
    train_data = Cifar10_Dataset(True, transform, target_transform)
    print('size of train_data:{}'.format(train_data.__len__()))
    test_data = Cifar10_Dataset(False, transform, target_transform)
    print('size of test_data:{}'.format(test_data.__len__()))
第二步:定义损失函数

源码链接:https://github.com/vandit15/Class-balanced-loss-pytorch
要注意的是,源码需要修改,不然无法调用gpu.
修改好的代码为:
class_balanced_loss.py

import numpy as np
import torch
import torch.nn.functional as F
from torch.optim import lr_scheduler
import torch.optim as optim


def focal_loss(labels, logits, alpha, gamma):
    """Compute the focal loss between `logits` and the ground truth `labels`.

    Focal loss = -alpha_t * (1-pt)^gamma * log(pt)
    where pt is the probability of being classified to the true class.
    pt = p (if true class), otherwise pt = 1 - p. p = sigmoid(logit).

    Args:
      labels: A float tensor of size [batch, num_classes].
      logits: A float tensor of size [batch, num_classes].
      alpha: A float tensor of size [batch_size]
        specifying per-example weight for balanced cross entropy.
      gamma: A float scalar modulating loss from hard and easy examples.

    Returns:
      focal_loss: A float32 scalar representing normalized total loss.
    """    
    BCLoss = F.binary_cross_entropy_with_logits(input = logits, target = labels,reduction = "none")

    if gamma == 0.0:
        modulator = 1.0
    else:
        modulator = torch.exp(-gamma * labels * logits - gamma * torch.log(1 + 
            torch.exp(-1.0 * logits)))

    loss = modulator * BCLoss

    weighted_loss = alpha * loss
    focal_loss = torch.sum(weighted_loss)

    focal_loss /= torch.sum(labels)
    return focal_loss



def CB_loss(labels, logits, samples_per_cls, no_of_classes, loss_type, beta, gamma):

    """Compute the Class Balanced Loss between `logits` and the ground truth `labels`.

    Class Balanced Loss: ((1-beta)/(1-beta^n))*Loss(labels, logits)
    where Loss is one of the standard losses used for Neural Networks.

    Args:
      labels: A int tensor of size [batch].
      logits: A float tensor of size [batch, no_of_classes].
      samples_per_cls: A python list of size [no_of_classes].
      no_of_classes: total number of classes. int
      loss_type: string. One of "sigmoid", "focal", "softmax".
      beta: float. Hyperparameter for Class balanced loss.
      gamma: float. Hyperparameter for Focal loss.

    Returns:
      cb_loss: A float tensor representing class balanced loss
    """
    effective_num = 1.0 - np.power(beta, samples_per_cls)
    weights = (1.0 - beta) / np.array(effective_num)
    weights = weights / np.sum(weights) * no_of_classes
    # print(weights.shape)

    labels_one_hot = F.one_hot(labels, no_of_classes).float().cuda()
    # print(labels_one_hot.shape)

    weights = torch.tensor(weights).float()
    # 增加维度
    weights = weights.unsqueeze(0).cuda()
    # print(weights)
    # labels_one_hot.shape[0] -- batch_size
    weights = weights.repeat(labels_one_hot.shape[0],1) * labels_one_hot
    weights = weights.sum(1)
    weights = weights.unsqueeze(1)
    weights = weights.repeat(1,no_of_classes)

    if loss_type == "focal":
        cb_loss = focal_loss(labels_one_hot, logits, weights, gamma)
    elif loss_type == "sigmoid":
        cb_loss = F.binary_cross_entropy_with_logits(input = logits,target = labels_one_hot, weight = weights)
    elif loss_type == "softmax":
        pred = logits.softmax(dim = 1)
        cb_loss = F.binary_cross_entropy(input = pred, target = labels_one_hot, weight = weights)
    return cb_loss

第三步:训练

cifartrain.py

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import argparse
from resnet18 import ResNet18
import os
from class_balanced_loss import CB_loss
import numpy as np
import torch.nn.functional as F
from loadcifar import Cifar10_Dataset
from torch.optim import lr_scheduler
from sigmoidCE import sigmoidlose

# 定义是否使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# 参数设置,使得我们能够手动输入命令行参数,就是让风格变得和Linux命令行差不多
parser = argparse.ArgumentParser(description='PyTorch CIFAR10 Training')
parser.add_argument('--outf', default='./model/', help='folder to output images and model checkpoints') #输出结果保存路径
args = parser.parse_args()

# 超参数设置
EPOCH = 200   #遍历数据集次数
pre_epoch = 0  # 定义已经遍历数据集的次数
BATCH_SIZE = 128      #批处理尺寸(batch_size)
LR = 0.1        #学习率

# 准备数据集并预处理
transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),  #先四周填充0,在吧图像随机裁剪成32*32
    transforms.RandomHorizontalFlip(),  #图像一半的概率翻转,一半的概率不翻转
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), #R,G,B每层的归一化用到的均值和方差
])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
def target_transform(label):
    label = np.array(label)
    target = torch.from_numpy(label).long()
    return target

# trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) #训练数据集
# trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)   #生成一个个batch进行批训练,组成batch的时候顺序打乱取
trainset = Cifar10_Dataset(True, transform=transform_train, target_transform=target_transform )#训练数据集
trainloader = torch.utils.data.DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2)   #生成一个个batch进行批训练,组成batch的时候顺序打乱取
print('size of train_data:{}'.format(trainset.__len__()))

testset = Cifar10_Dataset(False, transform=transform_test, target_transform=target_transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)
print('size of testset_data:{}'.format(testset.__len__()))
# Cifar-10的标签
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 模型定义-ResNet
net = ResNet18().to(device)

# 定义损失函数和优化方式

optimizer = optim.SGD(net.parameters(), lr=LR, momentum=0.9, weight_decay=5e-4) #优化方式为mini-batch momentum-SGD,并采用L2正则化(权重衰减)
scheduler = lr_scheduler.MultiStepLR(optimizer, [160, 180], 0.1)

# 训练
if __name__ == "__main__":
    num = []
    for i in range(10):
        num.append(int(np.floor(5000 * ((1 / 100) ** (1 / 9)) ** (i))))
    num = np.array(num)
    # num = torch.from_numpy(num)
    # num = num.to(device)

    if not os.path.exists(args.outf):
        os.makedirs(args.outf)
    best_acc = 0  #2 初始化best test accuracy
    print("Start Training, Resnet-18!")  # 定义遍历数据集的次数
    with open("acc.txt", "w") as f:
        with open("log.txt", "w")as f2:
            for epoch in range(pre_epoch, EPOCH):
                scheduler.step()
                print('\nEpoch: %d' % (epoch + 1))
                net.train()
                sum_loss = 0.0
                correct = 0.0
                total = 0.0
                for i, data in enumerate(trainloader, 0):
                    # 准备数据
                    length = len(trainloader)
                    inputs, labels = data
                    inputs, labels = inputs.to(device), labels.to(device)
                    optimizer.zero_grad()

                    # forward + backward
                    outputs = net(inputs)
                    loss = CB_loss(labels = labels, logits = outputs,
                            samples_per_cls = num, no_of_classes = 10,
                            loss_type = "sigmoid", beta = 0.9999, gamma=2)
                    # loss = sigmoidlose(labels, outputs)

                    loss.backward()
                    optimizer.step()

                    # 每训练1个batch打印一次loss和准确率
                    sum_loss += loss.item()
                    _, predicted = torch.max(outputs.data, 1)
                    total += labels.size(0)
                    correct += predicted.eq(labels.data).cpu().sum()
                    print('[epoch:%d, iter:%d] Loss: %.03f | Acc: %.3f%% | Lr: %.03f'
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1),
                             100. * float(correct) / total, optimizer.state_dict()['param_groups'][0]['lr']))
                    f2.write('%03d  %05d |Loss: %.03f | Acc: %.3f%% | Lr: %.03f'
                          % (epoch + 1, (i + 1 + epoch * length), sum_loss / (i + 1),
                             100. * float(correct) / total, optimizer.state_dict()['param_groups'][0]['lr']))
                    f2.write('\n')
                    f2.flush()

                # 每训练完一个epoch测试一下准确率
                print("Waiting Test!")
                with torch.no_grad():
                    correct = 0
                    total = 0
                    for data in testloader:
                        net.eval()
                        images, labels = data
                        images, labels = images.to(device), labels.to(device)
                        outputs = net(images)
                        # 取得分最高的那个类 (outputs.data的索引号)
                        _, predicted = torch.max(outputs.data, 1)
                        total += labels.size(0)
                        correct += (predicted == labels).sum()
                    print('测试分类准确率为:%.3f%%' % (100 * float(correct) / total))
                    acc = 100. * float(correct) / total
                    # 将每次测试结果实时写入acc.txt文件中
                    print('Saving model......')
                    torch.save(net.state_dict(), '%s/net_%03d.pth' % (args.outf, epoch + 1))
                    f.write("EPOCH=%03d,Accuracy= %.3f%%| Lr: %.03f" % (epoch + 1, acc,
                                     optimizer.state_dict()['param_groups'][0]['lr']))
                    f.write('\n')
                    f.flush()
                    # 记录最佳测试分类准确率并写入best_acc.txt文件中
                    if acc > best_acc:
                        f3 = open("best_acc.txt", "w")
                        f3.write("EPOCH=%d,best_acc= %.3f%%" % (epoch + 1, acc))
                        f3.close()
                        best_acc = acc
            print("Training Finished, TotalEPOCH=%d" % EPOCH)

论文中不平衡因子为100,基准网络为 ResNet-32 的的情况下,使用sigmoid损失函数时,分类错误率为29.55%;使用类平衡损失函数时,分类错误率为:25.43%.准确率提升约 4 个百分点。
本博客中使用的基准网络为 Res-Net18 实验结果,使用sigmoid损失函数时,分类错误率为26.64%;使用类平衡损失函数时,分类错误率为:25.85%.准确率提升约 1 个百分点。表明类平衡损失函数对长尾数据集分类准确度有所提升,但是由于基准网络不同,效果没有论文中那么明显。

  • 1
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,以下是PyTorch实现ResNet18的代码示例: ```python import torch import torch.nn as nn import torch.nn.functional as F class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.shortcut = nn.Sequential() if stride != 1 or in_planes != self.expansion*planes: self.shortcut = nn.Sequential( nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(self.expansion*planes) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_planes = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2) self.linear = nn.Linear(512*block.expansion, num_classes) def _make_layer(self, block, planes, num_blocks, stride): strides = [stride] + [1]*(num_blocks-1) layers = [] for stride in strides: layers.append(block(self.in_planes, planes, stride)) self.in_planes = planes * block.expansion return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = F.avg_pool2d(out, 4) out = out.view(out.size(0), -1) out = self.linear(out) return out def ResNet18(): return ResNet(BasicBlock, [2,2,2,2]) ``` 这是标准的ResNet18实现,可以在CIFAR-10等数据集上进行训练和测试。如果要使用其他的ResNet变体,只需要更改 `_make_layer` 方法和 `ResNet` 类的初始化函数即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值