深度学习(9)——模型的蒸馏、特征的蒸馏

前言

蒸馏就是把一个大模型变成一个相对小的模型

一、蒸馏的目的

Distill knowledge from bigger models

从大模型中学习知识

Use the distilled knowledge to guide the learning of smaller models

用学习到的知识指导学习一个更小的模型

Use smaller models to mimic the effect of bigger models

小模型的效果可以逼近大模型的效果

二、蒸馏中的softmax

以分类问题为例。关于分类问题,就会想到softmax(一个向量中的每一个分量先求指数,然后求所有分量指数分和,指数/和得到一个新的分量,组成新的向量,和为1),蒸馏中的softmax也是这样的处理思路,只是加了一个温度指数T,将e的指数再除以T;
在这里插入图片描述

那么当T=1时,没有区别
当T=100时,差异变小
当T=+∞时,每个分量的指数形式变成1,那么新的向量x=1/n

三、蒸馏流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值