吴恩达机器学习视频课提纲+随堂选择练习题——week6逻辑回归&week7正则化


前言

本文对吴恩达机器学习视频第6周和第7周的课程进行归纳总结。

一、WEEK6

本节内容主要介绍逻辑回归问题

6 - 1 - Classification

本章节先介绍分类任务的概念。

前面讲的线性回归主要针对回归问题,再来回顾一下回归,回归要解决的是预测问题,预测的是一个连续的值。比如预测房价。而本节所讲的分类问题要预测的变量是一个离散的值。在分类问题中,我们尝试预测的是结果是否属于某一个类(例如正确或错误)。分类问题的例子有:判断一封电子邮件是否是垃圾邮件;判断一次金融交易是否是欺诈;之前我们也谈到了肿瘤分类问题的例子,区别一个肿瘤是恶性的还是良性的。最简单的分类问题是二分类问题,即二选一。

6 - 2 - Hypothesis Representation

本节主要介绍分类任务的假设函数

在线性回归中,我们的假设函数是:
在这里插入图片描述
那么在分类问题中,假设函数又是什么呢?如果简单的套用线性回归的假设函数,其输出最后可能不是一个区间内的值,因为我们要进行分类通常设置一个阈值,输出大于这个阈值判断为一个结果,输出小于这个阈值判断为另一个结果,通常我们将分类的结果映射到[0,1]之间,阈值取零点几。显然,线性回归预测值会超越[0,1],不适用于解决分类问题。

要解决分类问题,就需要一个新的模型,这个模型叫逻辑回归,这个模型的输出范围始终在[0,1]。他的假设函数形式是这样的:
在这里插入图片描述
括号里那部分是不是有点眼熟?没错,括号里就是我们线性回归的假设函数,我们知道,线性回归的假设函数是一条直线,在分类问题中,既然要分类,那么类别之间肯定就会有一条分界线,对于二分类问题,我们假设它的分类边界是一条直线(不要问我为啥,逻辑回归就是假设边界是一条直线的二分类模型),这条边界我们借用线性回归的假设函数来表示,这也是为什么逻辑回归明明解决分类问题却非要带一个“回归”的原因,因为它的分类边界借用了回归的假设函数呀!

然后我们来看一下外面那一层函数g()是什么。g是逻辑函数logistic function,它是一个s形的函数,公式为:
在这里插入图片描述
该函数的图像:

在这里插入图片描述

通过逻辑函数,将输出映射到[0,1]。

6 - 3 - Decision Boundary

本章节主要介绍决策边界的概念
说白了就是分类的分界线,简单点的可能一条直线就能分开,难一点可能是曲线。

在这里插入图片描述
在这里插入图片描述

6 - 4 - Cost Function

本节主要介绍逻辑回归的损失函数

前面介绍了逻辑回归的任务,逻辑回归的假设函数,那么怎么确定假设函数的参数呢?

在这里插入图片描述

对于线性回归模型,我们定义的代价函数是所有模型误差的平方和。
在这里插入图片描述

理论上来说,我们也可以对逻辑回归模型沿用这个定义,但是问题在于,将逻辑回归的假设函数代入的得到的是一个非凸函数,这意味着我们的代价函数有许多局部最小值,这将影响梯度下降算法寻找全局最小值。
在这里插入图片描述
事实上,定义逻辑回归的代价函数为:

在这里插入图片描述

在这里插入图片描述
为什么这样定义代价函数呢?当实际的 y=1 且h (x)也为 1 时误差为 0,当 y=1 但h (x)不为1时误差随着h (x)变小而变大;当实际的 y=0 且h(x)也为 0 时代价为 0,当y=0 但h (x)不为 0时误差随着 h (x)的变大而变大。

在这里插入图片描述
在这里插入图片描述
在得到这样一个代价函数以后,我们便可以用梯度下降算法来求得能使代价函数最小的参数了,参数更新公式一样的:
在这里插入图片描述

6 - 5 - Simplified Cost Function and Gradient Descent

本节主要讲简化的代价函数和逻辑回归的梯度下降

上一节给出了逻辑回归的代价函数:

在这里插入图片描述
而这个cost function可以合并为如下形式:

在这里插入图片描述
最终逻辑回归的代价函数写作:

在这里插入图片描述
我们的优化目标还是那个,找到让J(θ)最小的参数θ。
在这里插入图片描述
而最小化的方式就是梯度下降。(这些跟线性回归是一个思路,唯一不同的是代价函数和假设函数的形式不一)
参数更新的思想也是一样的:

在这里插入图片描述
需要注意的是,即使更新参数的规则看起来基本相同,但由于假设的定义发生了变化,所以逻辑函数的梯度下降,跟线性回归的梯度下降实际上是两个完全不同的东西。而线性回归中提到的学习率的影响,特征缩放的影响,在逻辑回归中也是一样的原理,也适用于逻辑回归的梯度下降。

6 - 6 - Advanced Optimization

涉及梯度下降之外的优化代价函数方法,不太用,略。

6 - 7 - Multiclass Classification_ One-vs-all

本节主要介绍多分类问题。
前面讲解逻辑回归都是围绕的简单的二分裂问题,显然分类问题不可能只有二分类,还有三分类、四分类等多分类问题。如果想用逻辑回归解决多分类问题,需要用到"一对多" (one-vs-all) 的分类算法。

在这里插入图片描述
左图为二分类,右图为三分类,二分类没什么好说的了。多分类就是一对余的思想,把一类和剩下的其他类看做两大类,这样进行分类。
在这里插入图片描述

在这里插入图片描述
但是这样会有一个问题,就是你又多少类,就需要训练多少个模型。如果来了一个新的样本,在每个模型中预测一下,输出最好的那个结果。比如这个例子有三类,我们训练了三个针对判别三角、方块、叉号的分类器,新的输入x在三个分类器中输入,选max predict

WEEK6 课后习题

第1题
假设您已经训练了一个逻辑分类器,它在一个新示例x上输出一个预测h(x)=0.4,这意味着(选出所有正确项):

在这里插入图片描述

答案: CD

第2题
假设您有以下训练集,并拟合logistic回归分类器
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
答案:AB.
D肯定不对,逻辑回归的输出在[0,1]。添加多项式特征通常是为了更好的拟合数据,更好的拟合了代价函数肯定会下降,所以C不对。

第3题
对于逻辑回归,以下哪项是学习率为α的逻辑回归的正确梯度下降更新?选出所有正确项
在这里插入图片描述
答案:BD

第4题
以下哪项陈述是正确的?选出所有正确项

在这里插入图片描述
答案:BC

第5题

假设训练一个逻辑回归分类器:
在这里插入图片描述
假设θ0=6,θ1=-1,θ2=0,以下那个图表示分类器找到的决策边界?

在这里插入图片描述
在这里插入图片描述
答案:代入参数,h=g(6-x1),当x1=6时,h=g(o),联想一下sigmoid函数的图像,零点处取值为0.5,刚好是阈值,CD不对。当x<6时,h>0.5,选B

二、WEEK7

7 - 1 - The Problem of Overfitting

本节主要介绍过拟合的概念

什么是过拟合?在训练集上表现好,在测试集上表现差。如下图,同样的数据集,从左到右拟合的越来越好,但是如果来了一个新的数据,第三张图上的曲线可能没法经过这个新的数据点,导师测试效果很差。

在这里插入图片描述
分类问题同理:

在这里插入图片描述
以多项式理解,x 的次数越高,拟合的越好,但相应的预测的能力就可能变差。
而过拟合在数学上的表示主要看偏差和方差,
偏差:描述的是预测值(估计值)的期望与真实值之间的差距。偏差越大,越偏离真实数据;方差:描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散。
Bias:误差,对象是单个模型,期望输出与真实标记的差别;Variance:方差,对象是多个模型
过拟合的偏差低,方差高。

7 - 2 - Cost Function

本节主要介绍从代价函数入手如何解决过拟合问题。介绍了正则化的基本思想。

从上一小节的几张图可以看出,模型的次数越高(对应假设函数),模型越复杂,拟合能力越强,但是也越容易过拟合。正是那些高次项导致了过拟合的产生,所以如果我们能让这些高次项的系数接近于0的话,我们就能很好的拟合了。在一定程度上减小这些参数θ 的值,就是正则化的基本思想:修改代价函数,给高阶参数设置惩罚。
例如过拟合的回归模型是这样的:

在这里插入图片描述
显然模型的参数3,4的次方高,有过拟合的风险,那么在代价函数中就要给他们增加惩罚项;

在这里插入图片描述
假如我们有非常多的特征,我们并不知道其中哪些特征我们要惩罚,我们将对所有的特征进行惩罚,并且让代价函数最优化的软件来选择这些惩罚的程度。这样的结果是得到了一个较为简单的能防止过拟合问题的假设:

在这里插入图片描述
其中,λ是正则化参数,需要注意的是,θ0不进行惩罚。讨论一下λ取值的影响,如果取值很大,会导致模型过度惩罚,参数都尽量最小化,造成欠拟合。因为我们的目的是最小化J(θ),在其后面加了λ约束,如果λ很大,最小化的过程中为了使代价函数尽可能的小,θ也会尽可能的小,甚至趋于0,这样我们的假设函数就会变成h(x)=θ0,一条平行于x轴的直线。

再次强调,θ0不参与正则化!!!

week7课后习题

第1题

你正在训练一个分类逻辑回归模型。以下哪项陈述是正确的?选出所有正确项
在这里插入图片描述
答案:A不对,是为了不要在训练集上拟合的那么完美,所以性能肯定不会更好
B对,解决过拟合的一个手段就是增加有效样本以学习更多的有效特征,减少噪声影响
C太绝对了。

第2题
在这里插入图片描述
答案:A .正则化是为了减小参数的

第3题

以下关于正则化的陈述哪一个是正确的?选出所有正确项
在这里插入图片描述
答案:C

第4题

下列哪一个图片的假设与训练集过拟合?
在这里插入图片描述
答案:A

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值