深度学习(4)——以AlexNet为例计算神经网络的参数量parameters和浮点运算次数FLOPs

上一片博客(指路)末尾有提到计算公式,这里就不再赘述了放个截图。

在这里插入图片描述
本文将以AlexNet为例,计算AlexNet参数量量和浮点运算次数。

计算参数量

1.首先回顾参数量的计算公式:
如果输入是C channel ×H×W;卷积核是C inchannel × M outchannel ×K ×K;
parameters = [(K ×K)×C inchannel ]×M outchannel+M
2.分析AlexNet网络结构

在这里插入图片描述
共进行五次卷积操作,各层之间的kernel大小和输出feature尺寸下图中给出:
在这里插入图片描述
各层参数:
parameters = [(K ×K)×C ]×M+M
CONV1:

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值