windows查看GPU占用率以及GPU未执行原因

1、CPU利用率

进行深度学习时,发现电脑CPU占用率太高,接近100%,磁盘有时也达到100%。怀疑没有用GPU进行训练。

任务管理器中只有CPU、内存、磁盘的占用率情况

 

2、查看GPU占用率

(1)打开cmd窗口(win+R,再输入cmd)

(2)在文件夹C:\Program Files\NVIDIA Corporation\NVSMI里找到文件nvidia-smi.exe

(3)将文件拖入cmd窗口,就可以显示GPU信息。发现:GPU利用率很低,不到5%。

第一行是版本信息,第二行是标题栏,第三行就是具体显卡信息了。

GPU:编号,0

Name:显卡名,NVS 4200M

TCC/WDDM:WDDM

Fan:风扇转速,这里N/A,应该是没转

Temp:显卡温度,这里是66摄氏度

Perf:性能状态,congP0-P12,P0性能最大,P12最小,这里是P0

Pwr:能耗,Usage是使用量,Cap是总量

BusId:涉及GPU总线

Disp.A:表示GPU的显示是否已经初始化

Memory-Usage:显存使用率,这里才用很少,5%不到

CPU-Util:GPU利用率

Compute M:计算模式

 

(参考文章:https://blog.csdn.net/Cloudox_/article/details/78651637

(4)用GPU-Z工具查看GPU使用情况:发现负载为0

----------------------------------------------------------------------------------------------------------------------------------

综合nvidia-smi.exe和GPU-Z发现GPU没有执行

 

3、查看GPU没有执行的原因

>>> import tensorflow as tf
>>> sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
2018-05-17 15:25:30.744860: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1356] Found device 0 with properties:
name: NVS 4200M major: 2 minor: 1 memoryClockRate(GHz): 1.62
pciBusID: 0000:01:00.0
totalMemory: 1.00GiB freeMemory: 826.13MiB
2018-05-17 15:25:30.745094: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1406] Ignoring visible gpu device (device: 0, name: NVS 4200M, pci bus id: 0000:01:00.0, compute capability: 2.1) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.0.
2018-05-17 15:25:30.746883: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-05-17 15:25:30.747687: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:929]      0
2018-05-17 15:25:30.748385: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:942] 0:   N
Device mapping: no known devices.
2018-05-17 15:25:30.750654: I T:\src\github\tensorflow\tensorflow\core\common_runtime\direct_session.cc:284] Device mapping:Ignoring visible gpu device (device: 0, name: NVS 4200M, pci bus id: 0000:01:00.0, compute capability: 2.1) with Cuda compute capability 2.1. The minimum required Cuda capability is 3.0.
2018-05-17 15:25:30.746883: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:923] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-05-17 15:25:30.747687: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:929]      0
2018-05-17 15:25:30.748385: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:942] 0:   N
Device mapping: no known devices.
2018-05-17 15:25:30.750654: I T:\src\github\tensorflow\tensorflow\core\common_runtime\direct_session.cc:284] Device mapping:

信息提示:电脑gpu设备cuda计算能力为2.1,但gpu加速需要的最小cuda计算能力为3.0。

搜索查看https://blog.csdn.net/wyx100/article/details/78473732?locationnum=7&fps=1?%3E这篇文章也说到,cuda计算能力要达到3.0以上,才能进行gpu加速。否则会自动调用cpu进行计算。

### 查看 GPU 信息的方法 在 Windows 的命令行界面 (CMD) 中,可以通过 `nvidia-smi` 工具来查看 NVIDIA 显卡的相关信息。以下是具体的操作方法: #### 方法一:直接运行 `nvidia-smi` 1. 打开 CMD(Win + R → 输入 `cmd` 并回车)。 2. 在 CMD 中输入以下命令并按 Enter 键: ```bash nvidia-smi ``` 此命令可以显示显卡的基本信息、GPU 利用率、显存使用情况以及当前正在使用的进程列表[^2]。 #### 方法二:指定路径运行 `nvidia-smi` 如果系统环境变量中配置 NVSMI 路径,则需要手动切换到工具所在的目录后再运行命令。操作如下: 1. 打开 CMD。 2. 使用以下命令切换至 NVSMI 文件夹并运行 `nvidia-smi`: ```bash cd C:\Program Files\NVIDIA Corporation\NVSMI && nvidia-smi ``` 这一步确保即使路径被加入全局环境变量也能正常调用工具[^5]。 #### 输出内容说明 执行上述任一命令后,终端将返回一系列数据,其中包括但限于以下几个部分: - **GPU 名称**:表示所安装的显卡型号。 - **温度**:反映当前 GPU 温度状态。 - **显存利用情况**:展示总显存量及其已分配量与剩余可用空间。 - **GPU 利用率**:提供 GPU 当前工作负载百分比。 - **进程详情**:列举哪些程序正占用 GPU 资源及其消耗的具体数值[^1]。 需要注意的是,只有当 CUDA 计算能力达到一定标准时(通常为 3.0 或更高版本),某些特定功能才会启用;否则可能无法充分利用硬件性能而转由 CPU 完成运算任务[^4]。 ```python # 示例 Python 调用 nvidia-smi 获取 JSON 数据 import subprocess def get_gpu_info(): result = subprocess.run(['nvidia-smi', '--query-gpu=name,utilization.gpu,memory.total,memory.used', '--format=csv'], stdout=subprocess.PIPE) return result.stdout.decode() print(get_gpu_info()) ```
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值