【狗狗分类项目】(1)VGG16、VGG19、ResNet50、InceptionV3、Xception选择

本文对比了VGG16、VGG19、ResNet50、InceptionV3和Xception五种预训练模型在迁移学习任务中的表现,并重点分析了它们的默认输入尺寸及测试准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、keras中的application介绍

中文keras文档地址:http://keras-cn.readthedocs.io/en/latest/other/application/

主要有7个application:

本文主要对前5个进行比较分析。

 

2、VGG16、VGG19、ResNet50、InceptionV3、Xception5种模型,迁移学习后的测试准确率对比

(1)VGG16

VGG16默认输入图片:224*224

 

(2)VGG19

VGG19默认输入图片:224*224

 

(3)ResNet50

ResNet50默认输入图片:224*224

 

keras中模型:

bottleneck:

 

(4)Inception

Inception默认输入图片:299*299

 

keras中模型:

 

bottleneck:

 

(5)Xception

Xception默认输入图片:299*299

 

keras中模型:

 

bottleneck:

 

3个bottleneck提取函数:

 

可以发现,ResNet50, Xception, InceptionV3这三个模型准确率都达到80%以上,因此决定采用这三种中的2种或3种联合特征进行检测。

 

参考文章:

1、VGG16 2、VGG19 3、ResNet50 4、Inception V3 5、Xception介绍——迁移学习

DogBreed_gluon

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值