opencv之线性滤波滤波

本文详细介绍了图像滤波的目的,包括特征提取和噪声消除,并重点讲解了线性滤波(如方框滤波、均值滤波和高斯滤波)和非线性滤波(如中值滤波和双边滤波)的区别与应用场景。通过实例演示了C++ OpenCV库中如何使用boxFilter和GaussianBlur进行滤波操作,展示了不同滤波方式对图像效果的影响。
摘要由CSDN通过智能技术生成

图像滤波的目的:

        一是抽出对象的特征作为图像识别的特征模式;

        二是为适应图像处理的要求,消除图像数字化时所混入的噪声。

滤波器的分类:

        线性滤波:方框滤波、均值滤波和高斯滤波。

        非线性滤波:中值滤波和双边滤波。

对于高斯滤波如果是低通就是模糊操作,如果是高通就是锐化操作。

方框滤波:

void cv::boxFilter(InputArraysrc,   //输入图像
OutputArraydst,    //输出图像
int ddepth,    //输出图像深度,-1代表原图像深度
Sizeksize,     // 核大小
Pointanchor = Point(-1,-1),     //锚点,(-1,-1)表示取核的中心为锚点
bool normalize = true,     // 表示内核是否被区域归一化
int borderType = BORDER_DEFAULT    // 图像外部像素的边界模式
)

 案例:

#include<iostream>
#include<opencv2/imgproc.hpp>
#include<opencv2/highgui.hpp>
#include<opencv2/core.hpp>
using namespace std;
using namespace cv;

int main()
{
 Mat src = imread("C:/Users/Administrator/Desktop/3.png");
 if (!src.data)
 {
  cout << "请检查图像是否存在..." << endl;
  return -1;
 }
 namedWindow("src");
 namedWindow("blurimg");
 imshow("src", src);
 //进行均值滤波
 Mat blurimg;
 boxFilter(src, blurimg, -1, Size(5, 5));
 
 imshow("blurimg", blurimg);
 waitKey(0);
 return 0;
}

结果展示:

均值滤波:

        输出图像的每一个像素是核窗口内输入图像对应像素的平均值。缺点是:会使图像变得模糊,不能很好地去除噪点。

void cv::blur(InputArraysrc,    //输入图像
OutputArraydst,   //输出图像
Sizeksize,    //核大小
Pointanchor = Point(-1,-1),   //锚点
int borderType = BORDER_DEFAULT    //边界类型

)

 案例:

#include<iostream>
#include<opencv2/imgproc.hpp>
#include<opencv2/highgui.hpp>
#include<opencv2/core.hpp>
using namespace std;
using namespace cv;

int main()
{
 Mat src = imread("C:/Users/Administrator/Desktop/3.png");
 if (!src.data)
 {
  cout << "请检查图像是否存在..." << endl;
  return -1;
 }
 namedWindow("src");
 namedWindow("blurimg");
 imshow("src", src);
 //进行均值滤波
 Mat blurimg;
 box(src, blurimg,Size(9, 9));
 
 imshow("blurimg", blurimg);
 waitKey(0);
 return 0;
}

结果展示:

高斯滤波:

        对整幅图像进行加权平均的过程,每一个像素点的值,都由本身和邻域内的其他像素值经过加权平均后得到。

        具体操作流程:用一个模板(卷积或掩膜)扫描图像中的每一个像素,用模板确定的领域内像素的加权平均灰度值去替代模板中心像素点的值。

void cv::GaussianBlur(InputArraysrc,  
OutputArraydst,
Sizeksize,
double sigmaX,   //x方向的标准偏差
double sigmaY = 0,   //x方向的标准偏差
int borderType = BORDER_DEFAULT 
)

一维高斯函数:

二维高斯函数:

  案例:

#include<iostream>
#include<opencv2/imgproc.hpp>
#include<opencv2/highgui.hpp>
#include<opencv2/core.hpp>
using namespace std;
using namespace cv;

int main()
{
 Mat src = imread("C:/Users/Administrator/Desktop/3.png");
 if (!src.data)
 {
  cout << "请检查图像是否存在..." << endl;
  return -1;
 }
 namedWindow("src");
 namedWindow("blurimg");
 imshow("src", src);
 //进行均值滤波
 Mat blurimg;
 GaussianBlur(src, blurimg,Size(5, 5),0,0);
 
 imshow("blurimg", blurimg);
 waitKey(0);
 return 0;
}

结果展示:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值