适合于图像重建问题的归一化层:GENERALIZED NORMALIZATION TRANSFORMATION(GDN)

BN层在生成模型中的问题

在一般的卷积神经网络中,batch normalization(BN)批标准化是一种常见的中间处理层,它使得图像均值为0,标准差为1,这样就接近于高斯分布,更符合图像的特征。此外还可以加速训练。
BN层有一个优势,就是每次处理的批量的均值和标准差都不会相同,所以这相当于加入了噪声,增强了模型的泛化能力,但对于图像超分辨率重建、图像生成、图像去噪和图像压缩等生成模型,就不友好了,生成的图像要求尽可能清晰,不应该引入噪声,所以这些应用场景下不应该使用BN层。:知乎上有大神对这个问题的讨论
这里引用lqfarmer大神的回答
在这里插入图片描述

GDN层

ICLR2016论文《DENSITY MODELING OF IMAGES USING A
GENERALIZED NORMALIZATION TRANSFORMATION》提出了GDN层,是一种更适合图像重建的归一化层。并且作者在ICLR2017论文《END-TO-END OPTIMIZED IMAGE COMPRESSION》中的图像压缩算法中使用了GDN层。

核心公式如下:
y i = x i ( β i 2 + ∑ γ i × x i 2 ) 1 2 y_{i}=\frac{x_{i}}{(\beta^{2}_{i}+\sum \gamma_{i}\times x_{i}^{2})^{\frac{1}{2}}} yi=(βi2+γi×xi2)21xi

其中 x i x_{i} xi为第i层的输入特征图, β i \beta_{i} βi γ i \gamma_{i} γi均为需要学习的参数,这一点与BN层一样。在第一篇论文中,原本这个指数是需要指定的超参数,但是第二篇轮以及以后的论文都默认为2。
这是github上找到的一个GDN层的pytorch实现,以其为例详解其计算过程。
设置初始值 β m i n = 1 0 − 6 \beta_{min}=10^{-6} βmin=106, γ i n i t = 0.1 \gamma_{init}=0.1 γinit=0.1,偏差 b = 2 − 18 b=2^{-18} b=218, c h ch ch代表这一层的通道数
β b o u n d = [ β m i n + b 2 ] 1 2 \beta_{bound}=[\beta_{min}+b^{2}]^{\frac{1}{2}} βbound=[βmin+b2]21

γ b o u n d = b \gamma_{bound}=b γbound=b

β = ( [ 1 , 1 , ⋯   , 1 ] ⏟ 数 量 : c h , 类 型 : t e n s o r + b 2 ) 1 2 \beta=(\underbrace{[1,1,\cdots ,1]}_{数量:ch,类型:tensor}+b^{2})^{\frac{1}{2}} β=(:ch:tensor [1,1,,1]+b2)21

γ = ( γ i n i t × [ 1 0 ⋯ 0 0 1 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 1 ] c h × c h + b 2 ) 1 2 \gamma=(\gamma_{init}\times \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \\ \end{bmatrix}_{ch\times ch}+b^{2})^{\frac{1}{2}} γ=(γinit×100010001ch×ch+b2)21
β = m a x ( β , ( [ 1 , 1 , ⋯   , 1 ] ⏟ 数 量 : c h × β b o u n d ) ) \beta=max(\beta,(\underbrace{[1,1,\cdots,1]}_{数量:ch}\times\beta_{bound})) β=max(β,(:ch [1,1,,1]×βbound))

以这个 β \beta β来进行反向传播学习,然后
β = β 2 − b 2 \beta=\beta^{2}-b^{2} β=β2b2

γ = m a x ( γ , ( [ 1 1 ⋯ 1 1 1 ⋯ 1 ⋮ ⋮ ⋱ ⋮ 1 1 ⋯ 1 ] c h × c h × γ b o u n d ) ) \gamma=max(\gamma,( \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots&\vdots&\ddots&\vdots \\ 1&1&\cdots&1 \\ \end {bmatrix}_ {ch \times ch}\times\gamma_{bound})) γ=max(γ,(111111111ch×ch×γbound))

以这个 γ \gamma γ来进行反向传播学习,然后
γ = γ 2 − b 2 \gamma=\gamma^{2}-b^{2} γ=γ2b2

γ \gamma γ整形为 ( c h , c h , 1 , 1 ) (ch,ch,1,1) (ch,ch,1,1)的形状,相当于核长为1,通道数为 c h ch ch的卷积核,且个数为 c h ch ch
将这个卷积核作用在输入特征图的平方上,加上偏置 β \beta β,就巧妙地完成了 ( β i 2 + ∑ γ i × x i 2 ) (\beta^{2}_{i}+\sum \gamma_{i}\times x_{i}^{2}) (βi2+γi×xi2)的计算。最后一步:
y i = x i ( β i + ∑ γ i × x i 2 ) 1 2 y_{i}=\frac{x_{i}}{(\beta_{i}+\sum \gamma_{i}\times x_{i}^{2})^{\frac{1}{2}}} yi=(βi+γi×xi2)21xi

代码如下:

import torch
import torch.utils.data
from torch import nn, optim
from torch.nn import functional as F
from torchvision import datasets, transforms
from torchvision.utils import save_image
from torch.autograd import Function


class LowerBound(Function):
    def forward(ctx, inputs, bound):
        b = torch.ones(inputs.size())*bound
        b = b.to(inputs.device)
        ctx.save_for_backward(inputs, b)
        return torch.max(inputs, b)
  
    def backward(ctx, grad_output):
        inputs, b = ctx.saved_tensors

        pass_through_1 = inputs >= b
        pass_through_2 = grad_output < 0

        pass_through = pass_through_1 | pass_through_2
        return pass_through.type(grad_output.dtype) * grad_output, None


class GDN(nn.Module):
    """Generalized divisive normalization layer.
    y[i] = x[i] / sqrt(beta[i] + sum_j(gamma[j, i] * x[j]))
    """
  
    def __init__(self,
                 ch,
                 device,
                 inverse=False,
                 beta_min=1e-6,
                 gamma_init=.1,
                 reparam_offset=2**-18):
        super(GDN, self).__init__()
        self.inverse = inverse
        self.beta_min = beta_min
        self.gamma_init = gamma_init
        self.reparam_offset = torch.FloatTensor([reparam_offset])

        self.build(ch, torch.device(device))
  
    def build(self, ch, device):
        self.pedestal = self.reparam_offset**2
        self.beta_bound = (self.beta_min + self.reparam_offset**2)**.5
        self.gamma_bound = self.reparam_offset
  
        # Create beta param
        beta = torch.sqrt(torch.ones(ch)+self.pedestal)
        self.beta = nn.Parameter(beta.to(device))

        # Create gamma param
        eye = torch.eye(ch)
        g = self.gamma_init*eye
        g = g + self.pedestal
        gamma = torch.sqrt(g)

        self.gamma = nn.Parameter(gamma.to(device))
        self.pedestal = self.pedestal.to(device)

    def forward(self, inputs):
        device_id = inputs.device.index

        beta = self.beta.to(device_id)
        gamma = self.gamma.to(device_id)
        pedestal = self.pedestal.to(device_id) 

        unfold = False
        if inputs.dim() == 5:
            unfold = True
            bs, ch, d, w, h = inputs.size() 
            inputs = inputs.view(bs, ch, d*w, h)

        _, ch, _, _ = inputs.size()

        # Beta bound and reparam
        beta = LowerBound()(beta, self.beta_bound)
        beta = beta**2 - pedestal 

        # Gamma bound and reparam
        gamma = LowerBound()(gamma, self.gamma_bound)
        gamma = gamma**2 - pedestal
        gamma  = gamma.view(ch, ch, 1, 1)

        # Norm pool calc
        norm_ = nn.functional.conv2d(inputs**2, gamma, beta)
        norm_ = torch.sqrt(norm_)

        # Apply norm
        if self.inverse:
            outputs = inputs * norm_
        else:
            outputs = inputs / norm_

        if unfold:
            outputs = outputs.view(bs, ch, d, w, h)
        return outputs

将其命名为pytorch_gdn.py,在自己的模型中导入即可

from pytorch_gdn import GDN
......
class net(nn.Module):

    def __init__(self):
        super(net,self).__init__()
        ......
		device = torch.device('cuda')
		
		self.gdn = GDN(ch, device)#ch为这一层的通道数
	def forward(self,input):
        ......
        self.output = self.gdn(self.output)
        ......
        return self.output
  • 18
    点赞
  • 57
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值