深度学习处理超大像素的图片训练集的流程以及记录和问题

公司私有kfb格式转tif格式

由于我拿到的数据是kfb格式的,图片软件打不开,在网上下载了扫描这个kfb格式文件的扫描仪的厂家出的读图软件K-Viewer能够打开,但是想要放进程序里处理可就不行了,毕竟kfb这个格式不好办呀。 直接管厂家要kfb转tif的软件进行转格式,但是转格式有一个选项是layer,可供选择2-9层,我没搞懂有什么区别??我搞懂在贴上来。。(因为是多分辨率的,我想要最高level的剪切图,所以9层不同的分辨率都要哦)


超大像素图片的处理

等转好格式之后,发现图片像素高达6万×6万这么高,用python也加载不出来,ps3勉强能打开,这样的话就没办法标记了,只能想办法将图分割好之后再进行标记。所以又引出了下面的学习:
比如 (麻蛋,等我代码敲好,才发现有个开源的ASAP库。。。。。。。给你们贴个链接吧,直接标记去吧,小伙子们。。ASAP地址
标记好之后生成xml文件,用代码做成mask图就行了,参考下面的代码:
其中, mutiresolutionimageinterface模块怎么导入呢?

Configure your PYTHONPATH environment variable to contain the /bin directory path.
大体就是建立一个PYTHONPATH名字的环境变量,找到你安装ASAP的路径,将路径>>到/bin 这个路径放在PYTHONPATH环境变量中,这样,python就可以自动搜索到这个包了哦。

import multiresolutionimageinterface as mir
reader = mir.MultiResolutionImageReader()
mr_image = reader.open('camelyon17/centre_0/patient_010_node_4.tif')
annotation_list = mir.AnnotationList()
xml_repository = mir.XmlRepository(annotation_list)
xml_repository.setSource('camelyon17/centre_0/patient_010_node_4.xml')
xml_repository.load()
annotation_mask = mir.AnnotationToMask()
camelyon17_type_mask = True
label_map = {'metastases': 1, 'normal': 2} if camelyon17_type_mask else {'_0': 1, '_1': 1, '_2': 0}
conversion_order = ['metastases', 'normal'] if camelyon17_type_mask else  ['_0', '_1', '_2']
annotation_mask.convert(annotation_list, output_path, mr_image.getDimensions(), mr_image.getSpacing(), label_map, conversion_order)
1. 有关open cv模块的学习
2. 有关图片剪切的学习
3. 有关内存映射的学习
4. 

图片标记的解决

我决定用一个开源的python软件,pyQ5,然后通过安装pip install pyq5,和pip install labelme,后就可以了使用这个GUI图形界面标记区域生成mask图,为下面扣出图做准备。
具体步骤请参考:
https://blog.csdn.net/l297969586/article/details/79140840
https://github.com/wkentaro/labelme


剪切mask图

未完待续。。。。。。。
(这个我也懒得写了。。。。。)下载完就知道ASAP的强大了,

恩,懒促使我找到牛逼的库,一块懒起来吧哈哈哈

阅读更多
上一篇有用的文档以及博客链接
下一篇python中图片处理的学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭