torch.Tensor()与torch.empty()张量创建方法

 torch.empty()   创建任意数据类型的张量

 torch.tensor() 只创建torch.FloatTensor类型的张量

 所以torch.Tensor() 是torch.empty() 的特例

empty()返回一个包含未初始化数据的张量。使用参数可以指定张量的形状、输出张量、数据类型。

举例

empty = torch.empty(2, 3)  # Returns a tensor filled with uninitialized data.
print(empty)  # 每一次跑的结果都不一样
# tensor([[2.6999e-06, 1.7377e-04, 1.0431e-08],
#         [4.0046e-11, 1.4013e-45, 2.6407e-06]])

===========================================================================

tensor = torch.tensor([2, 8])  # Constructs a tensor with data
print(tensor)  # tensor([2, 8])

# WARNING(注意!!!)
# torch.tensor() always copies data.
# If you have a Tensor data and want to avoid a copy, use torch.Tensor.requires_grad_()
# or torch.Tensor.detach(). If you have a NumPy ndarray and want to avoid a copy, use torch.as_tensor().

以及一些其他创建张量的方法,源码来自知乎专栏by李小伟

https://zhuanlan.zhihu.com/p/86984581

import torch


# =======================================================================
empty_like = torch.empty_like(empty)  # Returns an uninitialized tensor with the same size as input
print(empty_like)  # 创建一个 size 和 input.size(此处是empty) 一样的张量
# tensor([[1.0293e-37, 0.0000e+00, 1.4013e-45],
#         [0.0000e+00, 8.9683e-44, 0.0000e+00]])

# =======================================================================
# torch.eye(n, m=None, out=None)
# 参数:
# n (int ) – 行数
# m (int, optional) – 列数.如果为None,则默认为n
# out (Tensor, optinal) - Output tensor

eye = torch.eye(3)  # 返回一个2维张量,对角线位置全1,其它位置全0;即n维单位矩阵
print(eye)
# tensor([[1., 0., 0.],
#         [0., 1., 0.],
#         [0., 0., 1.]])

# =======================================================================
zeros_3_2 = torch.zeros(3, 2)  # 返回一个全为标量 0 的张量,形状由可变参数sizes 定义
print(zeros_3_2)
# tensor([[0., 0.],
#         [0., 0.],
#         [0., 0.]])
zeros_5 = torch.zeros(5)
print(zeros_5)
# tensor([0., 0., 0., 0., 0.])
# torch.zeros_like() # 和 torch.empty_like() 功能类似

# =======================================================================
ones = torch.ones(2, 3)  # 返回一个全为1 的张量,形状由可变参数sizes定义。
print(ones)
# tensor([[1., 1., 1.],
#         [1., 1., 1.]])
# torch.ones_like()

# =======================================================================
rand = torch.rand(2, 3)  # 返回一个张量,包含了从区间[0,1)的均匀分布中抽取的一组随机数,形状由可变参数sizes 定义。
print(rand)  # 随机初始化的值在 [0,1) 之间
# tensor([[0.5047, 0.8442, 0.1771],
#         [0.3896, 0.5468, 0.9686]])
# torch.rand_like()

# =======================================================================
randn = torch.randn(2, 3)  # 返回一个张量,包含了从标准正态分布(均值为0,方差为 1,即高斯白噪声)中抽取一组随机数,形状由可变参数sizes定义
print(randn)
# tensor([[ 0.0539,  0.8289, -1.6746],
#         [-1.7428,  0.6285,  0.1432]])
# torch.randn_like()

# =======================================================================
# Returns a tensor filled with random integers generated uniformly between low (inclusive) and high (exclusive).
# The shape of the tensor is defined by the variable argument size.
# 其中的参数 high和size是必要的,low是可选的(默认为0)
randint_01 = torch.randint(3, 5, (3,))
print(randint_01)
# tensor([3, 4, 3])

randint_02 = torch.randint(10, (2, 2))
print(randint_02)  # low 默认是 0
# tensor([[6, 0],
#         [4, 5]])

randint_03 = torch.randint(3, 10, (2, 2))
print(randint_03)
# tensor([[7, 3],
#         [6, 9]])
# torch.randint_like()

# =======================================================================

 

<think>好的,我现在需要回答用户关于PyTorchtorch.Tensortorch.tensor的区别及使用场景的问题。首先,我得回忆一下这两个函数的不同之处。根据用户提供的引用内容,尤其是引用[1]和[2],我记得torch.Tensor是一个类,而torch.tensor是一个工厂函数。用户提到torch.Tensor使用全局默认的数据类型,通常是FloatTensor,而torch.tensor会根据输入数据推断数据类型。 接下来,我需要整理它们的主要区别。首先是数据类型的处理。torch.Tensor创建时如果不指定数据,会调用torch.empty,这可能包含未初始化的值,而torch.tensor则会根据数据推断类型。例如,用torch.Tensor([1,2])会得到浮点张量,而torch.tensor([1,2])会得到整型张量。这一点需要明确说明。 然后是默认参数的差异。torch.Tensor不接受dtype等参数,但torch.tensor可以指定dtype、device等参数。这在使用时会影响张量创建方式,比如是否需要显式指定类型或设备。 接下来是使用场景。根据引用[3],当需要其它库交互时,比如matplotlib,可能需要将张量转换为Python标量,这时使用.item()方法,但这也涉及到张量创建方式是否正确。例如,如果用户需要精确控制数据类型,应该使用torch.tensor并指定参数;而如果只是需要一个张量,可能用torch.Tensor更快。 还需要注意一些常见的误区,比如用户可能会混淆两者的构造函数,导致数据类型不符合预期。例如,使用torch.Tensor(2,3)会创建一个未初始化的2x3张量,而torch.tensor(2,3)会报错,因为参数不正确。这时候需要提醒用户注意参数传递的方式。 此外,要确保回答中引用了用户提供的参考内容,比如在提到数据类型推断时引用[2],在提到其它库交互时引用[3]。最后,生成的相关问题应该覆盖区别、使用场景、转换方法以及常见错误,帮助用户进一步学习。</think>在PyTorch中,`torch.Tensor``torch.tensor`的核心区别体现在**数据类型控制**和**默认行为**上,具体差异如下: --- ### 一、核心区别对比 | 特性 | torch.Tensor | torch.tensor | |--------------------|----------------------------------|----------------------------------| | **数据类型推断** | 不根据输入数据推断类型,默认使用`torch.float32`[^2] | 根据输入数据自动推断类型[^1] | | **张量创建** | 默认调用`torch.empty()`,可能包含未初始化值 | 必须提供数据,无法创建张量 | | **参数灵活性** | 不支持直接指定`dtype`/`device`参数 | 支持`dtype`/`device`/`requires_grad`参数 | | **语法性质** | 是类名(构造函数) | 是工厂函数(更灵活的初始化方式) | --- ### 二、使用场景详解 1. **优先使用`torch.tensor`的场景** - 需要**精确控制数据类型**时: ```python # 明确指定int64类型 a = torch.tensor([1, 2], dtype=torch.int64) ``` - 需要**设备指定**时: ```python # 创建GPU张量 b = torch.tensor([3.0], device='cuda') ``` - 需要**梯度追踪**时: ```python c = torch.tensor(5.0, requires_grad=True) ``` 2. **使用`torch.Tensor`的场景** - 快速创建**未初始化的大内存张量**: ```python empty_tensor = torch.Tensor(1000, 1000) # 适用于预分配内存 ``` - 需要保持**全局默认类型一致性**时: ```python # 假设全局默认类型为float16 torch.set_default_tensor_type(torch.HalfTensor) consistent_tensor = torch.Tensor([1.5, 2.5]) # 自动转为float16 ``` --- ### 三、典型误区解析 1. **数据污染问题** ```python # 错误示例:可能包含内存残留值 risky_tensor = torch.Tensor(3,3) # 未初始化 # 正确做法:显式初始化 safe_tensor = torch.tensor([[0.0]*3 for _ in range(3)]) ``` 2. **维度理解错误** ```python # 错误:创建标量而非向量 scalar = torch.Tensor(5) # 生成维度为[]的标量 # 正确:明确维度结构 vector = torch.tensor([5]) # 生成维度为[1]的向量 ``` --- ### 四、最佳实践建议 1. **类型安全优先原则** - 使用`torch.tensor`配合显式类型声明: ```python dtype_safe = torch.tensor(0, dtype=torch.uint8) ``` 2. **外部库交互规范** - 使用`.item()`进行标量转换[^3]: ```python # Matplotlib示例 point = torch.tensor([3.0, 4.0]) plt.plot(point[0].item(), point[1].item()) ``` 3. **内存优化技巧** - 对大规模数据使用`torch.Tensor`预分配内存: ```python buffer = torch.Tensor(1000000) # 预分配内存 buffer[:] = torch.randn(1000000) # 后续填充数据 ``` ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值