聚类实战:从PCA降维到K-Means和DBSCAN的完整指南

在数据科学的众多领域中,聚类算法无疑是探索数据集内在结构的强大工具。本文将带您深入了解如何应用主成分分析(PCA)进行降维,以及如何使用K-Means和DBSCAN这两种流行的聚类算法,来揭示数据的隐藏模式。

代码开源地址👉:

源码地址icon-default.png?t=O83Ahttps://www.yuque.com/yuqueyonghuik8ysz/gxfuvi/gtih647ap8ric62h?singleDoc#

一、PCA降维:理论到实践

在处理高维数据时,直观理解数据结构往往是一个挑战。这时,PCA就显得尤为重要。PCA是一种降维技术,能够将数据从原始的高维空间转换到低维空间,同时尽可能保留数据的变异性。

实践步骤:

  1. 导入必要的库:首先,我们需要导入Pandas用于数据处理,NumPy进行数值计算,以及sklearn.decomposition中的PCA。
  2. 标准化数据:PCA对数据的规模非常敏感,因此在应用PCA之前,先使用sklearn.preprocessing.StandardScaler对数据进行标准化。
  3. 应用PCA:接下来,实例化PCA对象,选择合适的组件数量,然后对数据集进行拟合和转换。

二、K-Means聚类:寻找数据的自然分组

K-Means算法通过将数据点分配到K个簇中,使得簇内的数据点尽可能相似,簇间的数据点尽可能不同,从而发现数据的自然分组。

实践步骤:

  1. 选择K值:K是事先设定的簇的数量。Yellowbrick库的KElbowVisualizer可以帮助我们通过肘部法则选择一个合适的K值。
  2. 应用K-Mea
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值