在数据科学的众多领域中,聚类算法无疑是探索数据集内在结构的强大工具。本文将带您深入了解如何应用主成分分析(PCA)进行降维,以及如何使用K-Means和DBSCAN这两种流行的聚类算法,来揭示数据的隐藏模式。
代码开源地址👉:
源码地址https://www.yuque.com/yuqueyonghuik8ysz/gxfuvi/gtih647ap8ric62h?singleDoc#
一、PCA降维:理论到实践
在处理高维数据时,直观理解数据结构往往是一个挑战。这时,PCA就显得尤为重要。PCA是一种降维技术,能够将数据从原始的高维空间转换到低维空间,同时尽可能保留数据的变异性。
实践步骤:
- 导入必要的库:首先,我们需要导入
Pandas
用于数据处理,NumPy
进行数值计算,以及sklearn.decomposition
中的PCA。 - 标准化数据:PCA对数据的规模非常敏感,因此在应用PCA之前,先使用
sklearn.preprocessing.StandardScaler
对数据进行标准化。 - 应用PCA:接下来,实例化PCA对象,选择合适的组件数量,然后对数据集进行拟合和转换。
二、K-Means聚类:寻找数据的自然分组
K-Means算法通过将数据点分配到K个簇中,使得簇内的数据点尽可能相似,簇间的数据点尽可能不同,从而发现数据的自然分组。
实践步骤:
- 选择K值:K是事先设定的簇的数量。
Yellowbrick
库的KElbowVisualizer
可以帮助我们通过肘部法则选择一个合适的K值。 - 应用K-Mea