PDF是一种查看方便但解析起来非常不方便的工具,不理解为什么到现在还没对这个问题从源头优化一下。对PDF文件的解析,一般分成以下2种:
1、文字版PDF(打开PDF后可以选中文字):对pdf源文件的解析;
2、扫描版PDF:将pdf转化成图像再解析。
一、判断文件类型为PDF
# 方法一:filetype文件可判断PDF、JPEG等多种文件类型
import filetype
print(filetype.guess(file_path)) # <filetype.types.archive.Pdf object at 0x7fc2b8d947b8>
# 方法二:二进制读取文件进行判断
binfile = open(file_path, 'rb') # 二制字读取
binfile.seek(0) # 文件游标移动,从位置0开始
print(binfile.read(10)) # b'%PDF-1.4\r\n'
二、判断是文字版还是扫描版PDF
方案一:基于提取文字
目前没有找到特别优雅的方法来通过python代码区分,采用的是读取第一页(或所有页)基于是否包含文字来进行区分。网上有个人也是采用了这个方案:
https://github.com/dothinking/pdf2docx/issues/99
下文用了pdfplumber和fitz两种方法来进行源文件所有页的解析,如场景特殊且对速度要求高,可以改成第一页。
import fitz
import pdfplumber
import time
def fitz_judee_pdf(filename):
doc = fitz.open(filename)
for page in doc:
# print(page.getText())
if page.getText():
return True
return False
def pdfplumber_judee_pdf(filename):
doc = pdfplumber.open(filename)
for page in doc.pages:
# print(page.extract_words())
if page.extract_words():
return True
return False
t0 =time.time()
print(fitz_judee_pdf(file_path))
print(time.time()-t0)
t0 =time.time()
print(pdfplumber_judee_pdf(file_path))
print(time.time()-t0)
方案二:基于交叉引用表
理论上可以通过交叉引用表的属性来判断,扫描版有/Subtype /Image这行,未通过大量数据验证过是否严谨,注意lenXREF大于等于页码
checkIM = r"/Subtype(?= */Image)"
pdf = fitz.open(path)
lenXREF = pdf._getXrefLength()
count = 1
for i in range(1, lenXREF):
text = pdf._getXrefString(i)
isImage = re.search(checkIM, text)
if not isImage:
continue
三、pdf 解析文本
公认比较好用的pip库是pdfplumber,此外fitz也可以,经费够可以调pdflux这种服务商。fitz仅处理文本,pdfplumber还可以处理表格。
3.1 pdfplumber解析文本
PDFPlumber是基于 PDFMiner 构建的 PDF 解析器,微软构建DocBank(大规模文档布局标注数据集)用到了这个库。不能100%还原表格,支持可视化调试。在mac上解析某个markdown生成的pdf时遇到了一个坑,解析出来的文字是cid编码,解析普通的pdf没有问题。
CID码:PDF包含将字符代码映射到字形索引的CMAP。因此,CID是它映射到的字形在CMAP表中的字符标识。
import pdfplumber
pdf = pdfplumber.open(path)
import pandas as pd
for page in pdf.pages:
# 获取当前页面的全部文本信息,包括表格中的文字
# print(page.extract_text()) # 只提取文字,对表格信息,有简单合并行
# print(page.extract_words()) # 提取字符串的文本、坐标等信息
# print(page.extract_tables()) # 按行元素返回表格信息,无坐标
# print(page.chars) # 按字符而非字符串提取文本、坐标等信息
for t in page.extract_tables():
# for row in t:
# print(row)
# 得到的table是嵌套list类型,转化成DataFrame更加方便查看和分析
df = pd.DataFrame(t[1:], columns=t[0])
print(df)
# 只用第一页测试
break
pdf.close()
3.2 fitz 解析文本
import fitz
doc = fitz.open(path)
whole_pdf = []
for i, page in enumerate(doc):
words = page.getTextWords() # [x0, y0, x1, y1, "text", block#, line#, word#]
print(words)
# for w in words:
# print(fitz.Rect(w[:4]), w[4])
break
3.3 pdfplumber和fitz的区别
pdfplumber:速度慢,提取出的文字全
fitz:速度快,例如‘判断是文字版还是扫描版PDF’这部分会比pdfplumber快很多;有些pdf文字的部分文字明明可选但抽不出来?
3.4 cid码
可以简单理解为这种pdf的源文件被加密了,不能用代码直接读。
并且如果直接打开pdf文件去复制黏贴,也会ctrl+v出奇奇怪怪的字符。
cid介绍:[PDF基础知识] CID字库在PDF流程中的应用_(cid:61 pdf-CSDN博客
[PDF基础知识] CID字库在PDF流程中的应用_(cid:61 pdf-CSDN博客
在某个pdf中,pdfplumber 解析出cid码,fitz解析出更奇怪的乱码。因此考虑基于cid码去还原原始文本。仔细研究pdfplumber 解析结果后发现,数字、英文及-可以正常解析,汉字、冒号等不能正常解析。
查询网络信息得知,可以通过char(int(i)),来将cid码转为字符串。但我这里转化后还是乱码,某次翻到某篇文章说可以用分段的方式解决偏移https://www.zhihu.com/question/55063377,当时那篇文章是根据汉字、数字、符号划分了三段,代码如下:
Python解析pdf得到的中文CID字库如何变成utf-8或其他编码呢? - 知乎
if key <= 122:
# 数字大小写
rep[_[0]] = chr(key+31)
elif key <= 21902:
# 中文
rep[_[0]] = chr(key+19146)
else:
# 中文标点
rep[_[0]] = chr(key+43378)
但并非所有cid码的划分标准都相同,需要自己想办法去解码,比如我遇到的某个pdf在汉字里也要划段,“送检日期”中“送”和“检日期”的偏移不同。
具体这个偏移怎么探测呢?首先试试不偏移的情况,能否直接chr(int(i))转出来。其次,需要自己知道一些映射关系,如知道某些字符串到cid的对应关系,然后用以下2个函数测试。
# cid码到字符串
print(char(int(i+a)))
# 字符串到ASCII码
print(ord('X'))
理论上应该有个映射表集,不同字库、字体的cid码对应的字符是什么,但是我没有在网上找到相关资料。
l此外解析带表格的pdf还有一些其他方法:
1、pdfminer:较复杂、不能直接还原出表格,据说是pdfplumber的底层
2、tabula:依赖java、识别有问题、难以区分多张表
3、各个表格解析的开源项目,如paddleocr、tablemaster、camelot...
4、各个人工智能服务供应商,注册服务后获取token,需要上传文件后下载,如庖丁科技的pdflux
5、poppler:C++
四、pdf & 图像
4.1 pdf 转 图像
不论是扫描生成的图片型pdf还是word生成的可复制文本型pdf,均可转为图像。
def pdf2img(file_path, dest_path):
zoom_x = 2.0 # horizontal zoom 注意这两个参数,代表缩放比例,可以小于1,小于1时进行缩小
zomm_y = 2.0 # vertical zoom
mat = fitz.Matrix(zoom_x, zomm_y) # zoom factor 2 in each dimension
doc = fitz.open(file_path) # open document
image_paths = []
for page in doc: # iterate through the pages
pix = page.getPixmap(matrix=mat)
image_path = '{0}_{1}.jpg'.format(dest_path, page.number+1)
pix.writeImage(image_path)
image_paths.append(image_path)
return image_paths
遇到过一个神奇的文档,用万彩办公大师的图片转pdf功能生成,pdf文件只有13M,但是打开后每一页都超级大,单个字都有10*10大小,简直是个矩形海报,可能是顾客选了最大的参数,导致转图像时getPixmap这步内存爆炸,从而导致整个服务被杀死自动挂掉。
又遇到了一个神奇的文档,pdf是可以选字的文字版pdf,某一页开始尺寸变化,在对该pdf进行pdf2img时服务挂掉,且不能通过try来处理,报错信息是转pdf时提示段错误(核心已转储)。解决方式是升级fitz相关的PyMuPDF版本到1.19.0。
4.2 pdf提取图像
# pip3 install pyMuPDF==1.19.0
doc = fitz.open(file_path) # open document
for page in doc: # iterate through the pages
img_list = page.get_images()
for img in img_list:
im = fitz.Pixmap(doc,img[0])
img_array = np.frombuffer(im.samples,dtype=np.uint8).reshape(pix.height,pix.width,-1)
五、获取页面大小
得到每一页的宽高
方案一:
import pdfplumber
with pdfplumber.open(path) as pdf:
for i in range(len(pdf.pages)):
tmp = pdf.pages[i]
h = tmp.height
w = tmp.weight
方案二:
pdf = fitz.open(path)
for i,page in enumerate(pdf):
r= page.rect # 输出是(0,0,W,H)的矩形
w=r[2]
h=r[3]
六、交叉引用表
开源得到pdf文件的一系列属性信息
pdf = fitz.open(path)
lenXREF = pdf._getXrefLength() # 不一定等于pdf页码数,应该是大于等于页码数
count = 1
for i in range(1, lenXREF):
text = pdf._getXrefString(i)
# 获得各种意义不明的属性,有的能推测出来,例如
# Subtype Image表示该页是图片类型
# MediaBox、CropBox表示每一页的尺寸,可以简单理解为分辨率(实际这2者可以不同,有兴趣看https://blog.csdn.net/fghler/article/details/107456819)
# 注意Width Height不表示分辨率,遇到过一个文件,wh只有三四千,但实际分辨率有几十万
七、gptpdf
GitHub - CosmosShadow/gptpdf: Using GPT to parse PDF
基于图像大模型,如gpt-4o将pdf内容转化为markdown。没有用判断源生非源生那套,而是直接提取图片然后,img2markdown。步骤为:
step1:基于fitz提取每一页的图像,如果有图或表格等rect,另外截图后保存为png,并将其位置在原图内框出来。
step2:将图像输入大模型,要求转为markdown,截图处用![]()形式插入