RF实践——基于sonar声呐数据集

本文详细介绍了使用随机森林算法对Sonar声呐数据集进行分类的过程,包括数据预处理、随机森林的来源、算法实现、程序运行思路及结果分析。通过对不同树数量的实验,发现树木数量增加能提升模型准确性。
摘要由CSDN通过智能技术生成

一、相关数据

数据集下载:https://archive.ics.uci.edu/ml/datasets/Connectionist+Bench+(Sonar,+Mines+vs.+Rocks)

        注:下载 sonar.all-data并重命名为sonar.all-data.csv    增加后缀改变文件格式,放到project

用excel打开数据集,有208行60列特征(值域为0到1),标签为R/M。表示208个观察对象,60个不同角度返回的力度值,二分类结果是岩石/金属。

参考程序:https://blog.csdn.net/QcloudCommunity/article/details/79363040

        注:from csv import reader    连接中少了个r

参考程序2:http://www.yw1515.com/news/2018-04-06/118700.html

二、RF的来源

决策树方差高——引入bagging降低方差——bagging下的树相似,预测相似——引入列采样(本例中采用特征数的平方根)

bagging低方差——使用的决策树需低偏差,要深

三、各函数功能

load_csv:读取csv文件,按行保存到数组dataset中。

str_column_to_float:将某列字符去掉前后空格,并转换为浮点数格式

str_column_to_int:根据分类种类建立字典,标号0,1,2...将字符列转化为整数

cross_validation_split

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值