电动力学(1)

静场的情况

库仑定律(1785)

F ⃗ = 1 4 π ϵ 0 q Q r 2 r ^ ⃗ \vec{F} = {1 \over {4\pi\epsilon_0}}{qQ\over{r^2}}\vec{\hat{r}} F =4πϵ01r2qQr^
其中 r ^ ⃗ \vec{\hat{r}} r^ 为单位矢量。其中 ϵ 0 \epsilon_0 ϵ0为真空电容率,其大小为 8.8542 × 1 0 − 12 F ⋅ m − 1 8.8542 \times 10^{-12} F \cdot m^{-1} 8.8542×1012Fm1

高斯定理

∯ E ⃗ ⋅ d S ⃗ = 1 ϵ 0 ∑ q i = 1 ϵ 0 ∭ ρ d V \oiint\vec{E}\cdot \rm d\vec{S} = {1\over{\epsilon_0}}\sum q_i = {1\over{\epsilon_0}}\iiint\rho \rm dV E dS =ϵ01qi=ϵ01ρdV
其中, E ⃗ : = F ⃗ q \vec{E} := {\vec{F} \over {q}} E :=qF

静电场环路定理

∮ E ⃗ ⋅ d l ⃗ = 0 \oint\vec{E}\cdot \rm d\vec{l} = 0 E dl =0

磁场的高斯定理

∯ B ⃗ ⋅ d S ⃗ = 0 \oiint\vec{B}\cdot \rm d\vec{S} = 0 B dS =0

非静场的情况

毕奥-萨伐尔定律

d B ⃗ = μ 0 4 π I d l ⃗ × r ^ ⃗ r 2 \rm d\vec{B} = {\mu_0\over{4\pi}}{I\rm d\vec{l}\times \vec{\hat{r}}\over r^2} dB =4πμ0r2Idl ×r^
其中, μ 0 \mu_0 μ0为真空磁导率,其值为 4 π × 1 0 − 7 H ⋅ m − 1 4\pi\times10^{-7}H\cdot m^{-1} 4π×107Hm1

安培环路定理

∮ B ⃗ ⋅ d l ⃗ = μ 0 ∑ I i \oint\vec{B}\cdot \rm d\vec{l} = \mu_0\sum I_i B dl =μ0Ii

电流的连续性方程

∯ j ⃗ ⋅ d S ⃗ = − d Q d t \oiint\vec{j}\cdot \rm d\vec{S} = -{\rm dQ\over \rm dt} j dS =dtdQ
其中 j ⃗ \vec{j} j 为电流密度, ∯ j ⃗ ⋅ d S ⃗ = 0 \oiint\vec{j}\cdot \rm d\vec{S} = 0 j dS =0称为恒定电流条件。其微分形式为
∇ ⃗ ⋅ j ⃗ = − ∂ ρ ∂ t \vec\nabla\cdot\vec j = -\frac{\partial \rho}{\partial t} j =tρ

位移电流 全电流安培环路定理

∮ B ⃗ ⋅ d l ⃗ = μ 0 ∬ ( j ⃗ + ϵ 0 ∂ E ⃗ ∂ t ) ⋅ d S ⃗ \oint\vec{B}\cdot \rm d\vec{l} = \mu_0\iint(\vec{j} + \epsilon_0{\partial\vec{E} \over {\partial t}})\cdot \rm d\vec{S} B dl =μ0(j +ϵ0tE )dS

电磁感应定律

∮ E ⃗ ⋅ d l ⃗ = − d d t ∬ B ⃗ ⋅ d S ⃗ \oint\vec{E}\cdot \rm d\vec{l} = - {\rm d\over \rm dt}\iint\vec{B}\cdot \rm d\vec{S} E dl =dtdB dS

洛伦兹力

F ⃗ = q ( E ⃗ + v ⃗ × B ⃗ ) \vec{F} = q(\vec{E} + \vec{v}\times\vec{B}) F =q(E +v ×B )

安培定律

F ⃗ = I l ⃗ × B ⃗ \vec{F} = I\vec{l}\times\vec{B} F =Il ×B
安培定律是洛伦兹1磁场力的宏观体现,实际上, F ⃗ = I l ⃗ × B ⃗ = I t l ⃗ t × B ⃗ = q v ⃗ × B ⃗ \vec{F} = I\vec{l}\times\vec{B} = It{\vec{l}\over t}\times\vec{B} = q\vec{v}\times\vec{B} F =Il ×B =Ittl ×B =qv ×B

麦克斯韦方程组

斯托克斯定理

∭ ∇ ⃗ ⋅ A ⃗ d V = ∯ A ⃗ ⋅ d S ⃗ \iiint\vec\nabla\cdot\vec{A} \rm dV = \oiint\vec{A}\cdot \rm d\vec{S} A dV= A dS
∬ ∇ ⃗ × A ⃗ ⋅ d S ⃗ = ∮ A ⃗ ⋅ d l ⃗ \iint\vec\nabla\times\vec{A}\cdot\rm d\vec{S} = \oint\vec{A}\cdot\rm d\vec{l} ×A dS =A dl

积分形式

高斯电场定理 ∯ E ⃗ ⋅ d S ⃗ = 1 ϵ 0 ∭ ρ d V \oiint\vec{E}\cdot \rm d\vec{S} = {1\over{\epsilon_0}}\iiint\rho \rm dV E dS =ϵ01ρdV
高斯磁场定理 ∯ B ⃗ ⋅ d S ⃗ = 0 \oiint\vec{B}\cdot \rm d\vec{S} = 0 B dS =0
法拉第定律 ∮ E ⃗ ⋅ d l ⃗ = − ∬ ∂ B ⃗ ∂ t ⋅ d S ⃗ \oint\vec{E}\cdot \rm d\vec{l} = -\iint{\partial\vec{B}\over\partial t}\cdot \rm d\vec{S} E dl =tB dS
安培-麦克斯韦定律 ∮ B ⃗ ⋅ d l ⃗ = μ 0 ∬ ( j ⃗ + ϵ 0 ∂ E ⃗ ∂ t ) ⋅ d S ⃗ \oint\vec{B}\cdot \rm d\vec{l} = \mu_0\iint(\vec{j} + \epsilon_0{\partial\vec{E} \over {\partial t}})\cdot \rm d \vec{S} B dl =μ0(j +ϵ0tE )dS

微分形式

高斯电场定理 ∇ ⃗ ⋅ E ⃗ = ρ ϵ 0 \vec\nabla\cdot\vec{E} = {\rho \over \epsilon_0} E =ϵ0ρ
高斯磁场定理 ∇ ⃗ ⋅ B ⃗ = 0 \vec\nabla\cdot\vec{B} = 0 B =0
法拉第定律 ∇ ⃗ × E ⃗ = − ∂ B ⃗ ∂ t \vec\nabla\times\vec{E} = -{\partial\vec{B}\over\partial t} ×E =tB
安培-麦克斯韦定律 ∇ ⃗ × B ⃗ = μ 0 ( j ⃗ + ϵ 0 ∂ E ⃗ ∂ t ) \vec\nabla\times\vec{B} = \mu_0(\vec{j} + \epsilon_0{\partial\vec{E} \over {\partial t}}) ×B =μ0(j +ϵ0tE )

拉格朗日公式

a ⃗ × ( b ⃗ × c ⃗ ) = b ⃗ ( a ⃗ ⋅ c ⃗ ) − c ⃗ ( a ⃗ ⋅ b ⃗ ) \vec a\times(\vec b\times \vec c) = \vec b (\vec a \cdot \vec c) - \vec c (\vec a \cdot \vec b) a ×(b ×c )=b (a c )c (a b )

势场形式

由高斯磁场定律,数学上可以知道存在一个 A ⃗ \vec A A

  • 1
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值