坐标变换

本文探讨了流形上的坐标变换,包括切矢、切空间、坐标基底及其变换。介绍了度规张量的概念,以及线元和计算方法,如利用雅可比矩阵进行坐标变换下的度规计算。
摘要由CSDN通过智能技术生成

坐标变换

切矢和切空间

从流形 M M M R R R的映射 f  ⁣ : M → R f \colon M \to \R f:MR称为 M M M上的函数或 M M M上的标量场。
从流形 M M M上的全体光滑函数的集合 F M \mathscr F_M FM R \R R的映射 v  ⁣ : F M → R v \colon \mathscr F_M \to \R v:FMR称为点 p ∈ M p \in M pM的一个矢量,若 ∀ f , g ∈ F M ;   α , β ∈ R \forall f, g \in \mathscr F_M; ~ \alpha, \beta \in \R f,gFM; α,βR
v ( α f + β g ) = α v ( f ) + β v ( g ) v ( f g ) = v ( f ) g ∣ p + f ∣ p v ( g ) \begin{array}{ll} v(\alpha f + \beta g) = \alpha v(f) + \beta v(g) \\ v(fg) = v(f)g|_p + f|_pv(g) \end{array} v(αf+βg)=αv(f)+βv(g)v(fg)=v(f)gp+fpv(g)
I I I R \R R的一个区间,映射 C  ⁣ : I → M C \colon I \to M C:IM称为 M M M上的一条曲线。对任一 t ∈ I t \in I tI,有唯一的点 C ( t ) ∈ M C(t) \in M C(t)M与之对应。 t t t称为曲线的参数。
C ( t ) C(t) C(t) M M M上的曲线,则线上 C ( t 0 ) C(t_0) C(t0)点的切于 C ( t ) C(t) C(t)的切矢 T T T C ( t 0 ) C(t_0) C(t0)点的矢量,定义为
T ( f ) : = d ( f ∘ C ) d t ∣ t 0 ,   ∀ f ∈ F M T(f) := \frac{d(f \circ C)}{dt}|_{t_0}, ~ \forall f \in \mathscr F_M T(f):=dtd(fC)t0, fFM
常把 C ( t 0 ) C(t_0) C(t0)点的切于 C ( t ) C(t) C(t)的切矢 T T T记作 ∂ ∂ t ∣ C ( t 0 ) \frac{\partial}{\partial t}|_{C(t_0)} tC(t0)
M M M p p p点所有矢量的集合 V p V_p Vp n n n维矢量空间( n n n M M M的维数)。其中任一元素均可视为过 p p p点的某曲线的切矢,因此 p p p点的矢量也称为切矢量, V p V_p Vp则称为 p p p点的切空间。

坐标线和坐标基底

O O O为一坐标系, x μ x^\mu xμ为其坐标,则 O O O的子集
{ p ∈ O ∣ x 2 ( p ) = c o n s t , ⋯   , x n ( p ) = c o n s t } \{p \in O | x^2(p) = const, \cdots, x^n(p) = const \} { pOx2(p)=const,,xn(p)=const}
是以 x 1 x^1 x1为参数的一条曲线(改变 x 2 , ⋯   , x n x^2, \cdots, x^n x2,,xn的常数值则得另一曲线),称为 x 1 x^1 x1坐标线。
过点 p p p x μ x^\mu xμ坐标线的切矢称为点

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值