黎曼曲率张量漫谈

本文深入探讨了黎曼曲率张量,从导数算符的概念出发,介绍了Christoffel符号、与度规适配的导数算符,然后详细阐述了黎曼曲率张量、里奇张量、外尔张量和爱因斯坦张量的定义、性质及计算方法,特别关注了在刚性标架下的计算和几何意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导数算符

称从 ( k , l ) (k, l) (k,l)型张量场到 ( k , l + 1 ) (k, l + 1) (k,l+1)型张量场的映射 ∇ \nabla 为(无挠)导数算符,如果它满足如下条件:

  1. 具有线性性
  2. 满足莱布尼兹率
  3. 与张量积可交换
  4. v ( f ) = v a ∇ a f v(f) = v^a\nabla_af v(f)=vaaf
  5. 无挠性: ∇ a ∇ b f = ∇ b ∇ a f \nabla_a\nabla_bf = \nabla_b\nabla_af abf=baf

根据 d f df df的定义 d f ( v ) = v ( f ) df(v) = v(f) df(v)=v(f)不难看出, ∇ a f = ( d f ) a \nabla_af = (df)_a af=(df)a. 于是对于 ( 0 , 0 ) (0, 0) (0,0)型张量场来说,不同的导数算符的作用结果是一样的, ∇ ~ a ( f ) = ∇ a f = ( d f ) a \tilde\nabla_a(f) = \nabla_af = (df)_a ~a(f)=af=(df)a. 对于 ( 0 , 1 ) (0, 1) (0,1)型张量场来说,通常不同的导数算符作用的结果不一样,但我们可以考虑两导数算符的差,这表现为一个 ( 1 , 2 ) (1, 2) (1,2)型张量即 ( ∇ ~ a − ∇ a ) ω b = C c a b ω c (\tilde\nabla_a - \nabla_a)\omega_b = C^c{}_{ab}\omega_c (~aa)ωb=Ccabωc,于是有
∇ a ω b = ∇ ~ a ω b − C c a b ω c \nabla_a\omega_b = \tilde\nabla_a\omega_b - C^c{}_{ab}\omega_c aωb=~aωbCcabωc
另外根据导数算符的无挠性,容易证明 C C C的如下对称性
C c a b = C c b a C^c{}_{ab} = C^c{}_{ba} Ccab=Ccba
对于 ( 1 , 0 ) (1, 0) (1,0)型张量场,我们考虑式子 ∇ a ( ω b v b ) = ω b ∇ a v b + v b ∇ a ω b = ω b ∇ a v b + v b ( ∇ ~ a ω b − C c a b ω c ) \nabla_a(\omega_bv^b) = \omega_b\nabla_av^b + v^b\nabla_a\omega_b = \omega_b\nabla_av^b + v^b(\tilde\nabla_a\omega_b - C^c{}_{ab}\omega_c) a(ωbvb)=ωbavb+vbaωb=ωbavb+vb(~aωbCcabωc),另一方面 ∇ ~ a ( ω b v b ) = ω b ∇ ~ a v b + v b ∇ ~ a ω b \tilde\nabla_a(\omega_bv^b) = \omega_b\tilde\nabla_av^b + v^b\tilde\nabla_a\omega_b ~a(ωbvb)=ωb~avb+vb~aωb. 由这两式相等我们就得到 ω b ∇ a v b = ω b ∇ ~ a v b + C c a b v b ω c = ω b ∇ ~ a v b + C b a c v c ω b \omega_b\nabla_av^b = \omega_b\tilde\nabla_av^b + C^c{}_{ab}v^b\omega_c = \omega_b\tilde\nabla_av^b + C^b{}_{ac}v^c\omega_b ωbavb=ωb~avb+Ccabvbωc=ωb~avb+Cbacvcωb,于是
∇ a v b = ∇ ~ a v b + C b a c v c \nabla_av^b = \tilde\nabla_av^b + C^b{}_{ac}v^c avb=~avb+Cbacvc
类似地, ∇ a \nabla_a a ∇ ~ a \tilde\nabla_a ~a之差作用于任一 ( k , l ) (k, l) (k,l)型张量场 T T T的结果可以表示为 k + l k + l k+l项,每项都含有 C c a b C^c{}_{ab} Ccab,与 T T T的上指标缩并的 k k k项前面为 + + +号,与 T T T的下指标缩并的 l l l项前面为 − - 号。

Christoffel符号

考虑对坐标 x μ x^\mu xμ求偏导数的算符 ∂ μ \partial_\mu μ,它虽然可以看作 ∇ ~ a \tilde\nabla_a ~a的特例,但其定义依赖于坐标系。我们把与坐标系无关的那些 ∇ ~ a \tilde\nabla_a ~a称为协变导数算符, ∂ μ \partial_\mu μ显然不在此列。类似地,体现 ∇ a \nabla_a a ∂ a \partial_a a区别的张量场 C c a b C^c{}_{ab} Ccab称为 ∇ a \nabla_a a在该坐标系的Christoffel符号,记作 Γ c a b \Gamma^c{}_{ab} Γcab. 我们有
v ν ; μ = v ν , μ + Γ ν μ σ v σ ,   ω ν ; μ = ω ν , μ − Γ σ μ ν ω σ v^\nu{}_{;\mu} = v^\nu{}_{,\mu} + \Gamma^\nu{}_{\mu\sigma}v^\sigma, ~ \omega_{\nu;\mu} = \omega_{\nu,\mu} - \Gamma^\sigma{}_{\mu\nu}\omega_\sigma vν;μ=vν,μ+Γνμσvσ, ων;μ=ων,μΓσμνωσ
其中逗号表示求偏导数,分号表示求协变导数。

与度规适配的导数算符

导数算符 ∇ a \nabla_a a称为与 g b c g_{bc} gbc相适配的,如果 ∇ a g b c = 0 \nabla_ag_{bc} = 0 agbc=0. 可以证明,这样的 ∇ a \nabla_a a是唯一的。为此,我们可以展开 ∇ a g b c \nabla_ag_{bc} agbc,即 ∇ a g b c = ∇ ~ a g b c − C d a b g d c − C d a c g b d = ∇ ~ a g b c − C c a b − C b a c \nabla_ag_{bc} = \tilde\nabla_ag_{bc} - C^d{}_{ab}g_{dc} - C^d{}_{ac}g_{bd} = \tilde\nabla_ag_{bc} - C_{cab} - C_{bac} agbc=~agbcCdabgdcCdacgbd=~agbcCcabCbac
故由 ∇ a g b c = 0 \nabla_ag_{bc} = 0 agbc=0 C c a b + C b a c = ∇ ~ a g b c C_{cab} + C_{bac} = \tilde\nabla_ag_{bc} Ccab+Cbac=~agbc
同理 C c b a + C a b c = ∇ ~ b g a c C b c a + C a c b = ∇ ~ c g a b C_{cba} + C_{abc} = \tilde\nabla_bg_{ac} \\ C_{bca} + C_{acb} = \tilde\nabla_cg_{ab} Ccba+Cabc=~bgacCbca+Cacb=~cgab
前两式相加减第三式,并注意到 C c a b = C c b a C_{cab} = C_{cba} Ccab=Ccba
2 C c a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值