规范场论初步

整体规范不变性

整体规范变换是指不依赖时空坐标的变换。

变换群是阿贝尔群的情况

在标量场的规范变换
ϕ ( θ ) = e − i q θ ϕ 0 ,   ϕ ˉ ( θ ) = e i q θ ϕ ˉ 0 \phi(\theta) = \mathrm e^{-iq\theta}\phi_0, ~ \bar\phi(\theta) = \mathrm e^{iq\theta}\bar\phi_0 ϕ(θ)=eiϕ0, ϕˉ(θ)=eiϕˉ0
下,拉格朗日密度不变。也就是说,对于
L = − [ ( ∂ a ϕ ˉ ) ∂ a ϕ + m 2 ϕ ϕ ˉ ] \mathscr L = -[(\partial^a\bar\phi)\partial_a\phi + m^2\phi\bar\phi] L=[(aϕˉ)aϕ+m2ϕϕˉ]

0 = d L d θ = ∂ L ∂ ϕ d ϕ d θ + ∂ L ∂ ( ∂ a ϕ ) d ( ∂ a ϕ ) d θ + ∂ L ∂ ϕ ˉ d ϕ ˉ d θ + ∂ L ∂ ( ∂ a ϕ ˉ ) d ( ∂ a ϕ ˉ ) d θ 0 = \frac{d\mathscr L}{d\theta} = \frac{\partial \mathscr L}{\partial \phi}\frac{d\phi}{d\theta} + \frac{\partial \mathscr L}{\partial(\partial_a\phi)}\frac{d(\partial_a\phi)}{d\theta} + \frac{\partial \mathscr L}{\partial \bar\phi}\frac{d\bar\phi}{d\theta} + \frac{\partial \mathscr L}{\partial(\partial_a\bar\phi)}\frac{d(\partial_a\bar\phi)}{d\theta} 0=dθdL=ϕLdθdϕ+(aϕ)Ldθd(aϕ)+ϕˉLdθdϕˉ+(aϕˉ)Ldθd(aϕˉ)
容易验证其中 d ϕ d θ = − i q ϕ ,   d ( ∂ a ϕ ) d θ = − i q ∂ a ϕ \frac{d\phi}{d\theta} = -iq\phi, ~ \frac{d(\partial_a\phi)}{d\theta} = -iq\partial_a\phi dθdϕ=i, dθd(aϕ)=iqaϕ,再代入拉格朗日方程就得到
d L d θ = − i q ∂ a [ ϕ ∂ L ∂ ( ∂ a ϕ ) − ϕ ˉ ∂ L ∂ ( ∂ a ϕ ˉ ) ] = i q ∂ a ( ϕ ∂ a ϕ ˉ − ϕ ˉ ∂ a ϕ ) \frac{d\mathscr L}{d\theta} = -iq\partial_a[\phi\frac{\partial \mathscr L}{\partial(\partial_a\phi)} - \bar\phi\frac{\partial \mathscr L}{\partial(\partial_a\bar\phi)}] = iq\partial_a(\phi\partial^a\bar\phi - \bar\phi\partial^a\phi) dθdL=iqa[ϕ(aϕ)Lϕˉ(aϕˉ)L]=iqa(ϕaϕˉϕˉaϕ)

J a = i e q ( ϕ ∂ a ϕ ˉ − ϕ ˉ ∂ a ϕ ) J^a = ieq(\phi\partial^a\bar\phi - \bar\phi\partial^a\phi) Ja=ieq(ϕaϕˉϕˉaϕ)
则有 0 = ∂ a J a 0 = \partial_aJ^a 0=aJa,可见 J a J^a Ja就是对应的守恒流。
所有这样的变换的集合 { e − i q θ ∣ θ ∈ R } \{\mathrm e^{-iq\theta} | \theta \in \R \} { eiθR}是酉群 U ( 1 ) U(1) U(1),显然是阿贝尔群。

变换群是非阿贝尔群的情况

考虑同位旋变换
[ ϕ 1 ′ ϕ 2 ′ ] = U [ ϕ 1 ϕ 2 ] \begin{bmatrix} \phi'_1 \\ \phi'_2 \end{bmatrix} = U \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} [ϕ1ϕ2]=U[ϕ1ϕ2]
其中 U U U为一复矩阵, ϕ = [ ϕ 1 ϕ 2 ] \phi = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} ϕ=[ϕ1ϕ2]为核子的同位旋态波函数。在改变换下,系统的拉格朗日量仍是不变的。由归一化条件 ϕ † ϕ = 1 = ϕ ′ † ϕ ′ = ( U ϕ ) † ( U ϕ ) = ϕ † U † U ϕ \phi^\dagger\phi = 1 = \phi'^\dagger\phi' = (U\phi)^\dagger(U\phi) = \phi^\dagger U^\dagger U\phi ϕϕ=1=ϕϕ=(Uϕ)(Uϕ)=ϕUUϕ,这就要求 U † U = I U^\dagger U = I UU=I,所以 U ∈ U ( 2 ) U \in U(2) UU(2)是酉群,但 U ( 2 ) U(2) U(2)是非阿贝尔的。又 1 = det ⁡ ( I ) = det ⁡ ( U † U ) = ∣ det ⁡ U ∣ 2 1 = \det(I) = \det(U^\dagger U) = |\det U|^2 1=det(I)=det(UU)=detU2,所以 det ⁡ U = e i α ,   α ∈ R \det U = \mathrm e^{i\alpha}, ~ \alpha \in \R detU=eiα, αR. 以下为讨论方便起见,我们假定 det ⁡ U = 1 \det U = 1 detU=1,于是 U ∈ S U ( 2 ) U \in SU(2) USU(2),这不会影响问题的实质。注意到 S U ( 2 ) SU(2) SU(2)的群元可由其李代数 s u ( 2 ) \mathfrak{su}(2) su(2)的指数映射给出,即
U ( θ ⃗ ) = e − i 2 τ ⃗ ⋅ θ ⃗ U(\vec\theta) = \mathrm e^{-\frac{i}{2}\vec\tau\cdot\vec\theta} U(θ )=e2iτ θ
其中 τ ⃗ \vec\tau τ

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值